

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH **TECHNOLOGY**

Hankel Type Transformation and Convolution of Tempered Beurling Distributions

B.B.Waphare

MIT ACSC, Alandi, Tal: Khed, Dist: Pune, Maharashtra, India balasahebwaphare@gmail.com

Abstract

In this paper we develop the distributional theory of Hankel type transformation. New Frechet function type spaces $\mathcal{H}_{\alpha,\beta}(w)$ are introduced. The functions in $\mathcal{H}_{\alpha,\beta}(w)$ have a growth in infinity restricted by the Beurling type function w. We study on $\mathcal{H}_{\alpha,\beta}(w)$ and its dual the Hankel type transformation and the Hankel type convolution.

Keywords: Beurling type distributions, Hankel type transformation, Hankel type convolution.

Mathematics subject classification: Mathematics subject classification: 46F12.

Introduction

The theory of Hankel transform have been studied by many researchers in past from time to time.

The Hankel type transformation is defined by

$$
h_{\alpha,\beta}(\phi)(x) = \int\limits_0^\infty (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \phi(y) y^{4\alpha} dy, \ x \in (0,\infty),
$$

where $J_{\alpha-\beta}$ represents the Bessel type function of the first kind and order $\alpha-\beta$. Throughout this paper, we will assume that $(\alpha - \beta) > -\frac{1}{2}$ Lebesgue measurable function on $(0, \infty)$ and $\frac{1}{2}$. Notice that if ϕ is a

$$
\int\limits_{0}^{\infty} x^{4\alpha} \, |\phi(x)| \, dx < \infty,
$$

then, since the function $z^{-(\alpha-\beta)}J_{\alpha-\beta}(z)$ is bounded on $(0,\infty)$, the Hankel type transform $h_{\alpha,\beta}(\phi)$ is a bounded function on $(0,\infty)$. Moreover, $h_{\alpha,\beta}(\phi)$ is continuous

on $(0, \infty)$ and according to the Riemann-Lebesgue theorem for Hankel type transform $([15]),$

$$
\lim_{x\to\infty}h_{\alpha,\beta}\left(\phi\right)(x)=0.
$$

The study of Hankel transformation in distribution spaces was studied by Zemanian ([18],[19]). More recently Waphare and Gunjal [16] have investigated the $h_{\alpha,\beta}$ – transform of generalized functions with exponential growth. Our objective in this paper is to define the Hankel type transformation on new distribution spaces that are in a certain sense, between the spaces considered in [16] and [18].

Following Zemanian [18], we can introduce the space $\mathcal{H}_{\alpha,\beta}$ that consists of all those complex valued and smooth functions ϕ defined on $(0, \infty)$ such that, for every $m, n \in$ ℕ,

$$
\rho_{m,n}^{\alpha,\beta}(\phi) = \operatorname{Sup}_{x \in (0,\infty)} (1+x^2)^m \left| \left(\frac{1}{x}D\right)^n \left(x^{2\beta-1} \phi(x)\right) \right| < \infty.
$$

On $\mathcal{H}_{\alpha,\beta}$ we consider the topology generated by the family $\left\{\rho_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$ of seminorms. Then $\mathcal{H}_{\alpha,\beta}$ is a Frechet space and the Hankel type transformation $H_{\alpha,\beta}$ defined by

$$
H_{\alpha,\beta}(\phi)(x) = \int\limits_{0}^{\infty} (xy)^{\alpha+\beta} J_{\alpha-\beta}(xy) \phi(y) dy, \qquad x \in (0,\infty),
$$

is an automorphism of $\mathcal{H}_{\alpha,\beta}$ (see [18, Lemma 8]). Note that the two forms $h_{\alpha,\beta}$ and $H_{\alpha,\beta}$ of Hankel type transforms are related through

$$
H_{\alpha,\beta}(\phi)(x) = x^{2\alpha} h_{\alpha,\beta}(y^{2\beta-1}\phi)(x), \quad x \in (0,\infty).
$$

The Hankel type transformation $H_{\alpha,\beta}$ is defined on the dual $\mathcal{H}'_{\alpha,\beta}$ of $\mathcal{H}_{\alpha,\beta}$ by transposition. Altenburg [1] developed a theory similar to that of Zemanian for the h_{μ} – transformation. Note that the space $\mathcal{H}_{-1/2}$ coincides with the space $\mathcal H$ considered in [1].

In Waphare and Gunjal [16], the space $M_{\alpha,\beta}$ constituted by all the complex valued and smooth functions ϕ defined on $(0, \infty)$ satisfying

$$
\eta_{m,n}^{\alpha,\beta}\left(\phi\right)=\sup_{x\,\in\,(0,\infty)}e^{mx}\left|\left(\frac{1}{x}\,D\right)^n\left(x^{2\beta-1}\phi\left(x\right)\right)\right|<\infty,
$$

for each $m, n \in \mathbb{N}$ is considered.

In Waphare and Gunjal [16, Theorem 2.4] a characterization of the image by $H_{\alpha,\beta}$ of the space $\chi_{\alpha,\beta}$ as a certain space of entire functions with a restricted growth on horizontal strips is given. The Hankel type transform $H_{\alpha,\beta}$ is defined on the corresponding dual spaces by transposition. We introduce here the space $\mathcal{H}_{\alpha,\beta}(w)$ constituted by functions whose growth is restricted by e^{nw} , $n \in \mathbb{N}$, where w is a function that we will define later.

 Hirschman [11], Haimo [10] and Cholewinski [7] investigated the Hankel convolution operation.

The convolution associated with the $h_{\alpha,\beta}$ -transformation is defined as follows. The Hankel type convolution $f#_{\alpha,\beta} g$ of order $\alpha - \beta$ of the measurable functions f and g is given through

$$
\left(f\#_{\alpha,\beta} g\right)(x) = \int\limits_{0}^{\infty} f(y) \left(\right._{\alpha,\beta} \tau_x g\right)(y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy,
$$

where the Hankel type translation operator $\alpha, \beta \tau_x g$, $x \in (0, \infty)$, of g is defined by

$$
\left(\alpha_{,\beta}\tau_x\ g\right)(y)=\int\limits_{0}^{\infty}g(z)\ D_{\alpha,\beta}\ (x,y,z)\ \frac{z^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)}\ dz,
$$

provided that the above integrals exists. Here $D_{\alpha,\beta}$ is the following function

$$
D_{\alpha,\beta}(x,y,z) = \left(2^{\alpha-\beta}\Gamma(3\alpha+\beta)\right)^2 \int_0^{\infty} (xt)^{-(\alpha-\beta)} J_{\alpha-\beta}(xt) (yt)^{\alpha-\beta} J_{\alpha-\beta}(yt)
$$

$$
\times (zt)^{-(\alpha-\beta)} J_{\alpha-\beta}(zt) t^{4\alpha} dt, \qquad x, y, z \in (0, \infty).
$$

Moreover, we define $_{\alpha,\beta} \tau_o$ $g = g$.

The study of the $\#_{\mu}$ – convolution on L_p – spaces was developed in [10] and [11].

If we denote by $L_{1,\alpha,\beta}$ the space of complex valued and measurable functions f on $(0,\infty)$ such that

$$
\int_0^\infty |f(x)| x^{4\alpha} dx < \infty,
$$

the following interchange formula

$$
h_{\alpha,\beta}\left(f\#_{\alpha,\beta}g\right)=h_{\alpha,\beta}\left(f\right)h_{\alpha,\beta}\left(g\right),
$$

holds for every $f, g \in L_{1,\alpha,\beta}$.

The investigation of the distributional Hankel convolution was started by de Sousa-Pinto [13], who considered any $\mu = 0$. Betancor and Marrero ([3], [4] and [12]) studied the Hankel convolution on the Zemanian spaces. In [16], Waphare and Gunjal analyzed the $\#_{\alpha,\beta}$ – convolution of distributions with exponential growth.

In the sequel, since we think any confusion is possible, to simplify we will write #, τ_x ,

 $x \in [0, \infty)$ and D instead of $\#_{\alpha,\beta}, \pi_{\alpha,\beta}, \pi_{x} \in [0, \infty)$ and $D_{\alpha,\beta}$ respectively.

As in $[6]$, we consider continuous, increasing and non-negative functions w defined on $[0, \infty)$ such that $w(0) = 0, w(1) > 0$, and it satisfies the following three properties (i) $w(x + y) \leq w(x) + w(y), x, y \in [0, \infty),$

(ii) $\int_1^{\infty} (w(x)/x^2) dx < \infty$, and

(iii) there exist $a \in \mathbb{R}$ and $b > 0$ such that $w(x) \ge a + b \log (1 + x)$, $x \in [0,\infty)$.

We say $w \in \mathcal{M}$ when w satisfies the above conditions. If w is extended to ℝ as an even function, then w satisfies the subadditivity property (i) for every $x, y \in \mathbb{R}$.

Beurling [5] developed a general theory of distributions that extends the Schwartz theory. Some aspects of that theory were presented and completed by Bjorck [6]. Now we recall some definitions and properties from [2] which will be useful in the sequel.

Let $w \in \mathcal{M}$. For every $a > 0$ the space $B_{\alpha,\beta}^a$ $^{\alpha}_{\alpha,\beta}$ (*w*) is constituted by all those complex-valued and smooth functions ϕ on $(0, \infty)$ such that $\phi(x) = 0$, $x \ge a$, ϕ and $h_{\alpha,\beta}(\phi) \in L_{1,\alpha,\beta}$ and that

$$
\delta_n^{\alpha,\beta}(\phi) = \int\limits_0^\infty \left| h_{\alpha,\beta}(\phi)(x) \right| e^{n \, w(x)} \, x^{4\alpha} \, dx < \infty,
$$

for every $n \in \mathbb{N}$. $B_{\alpha,\beta}^a$ $\binom{a}{\alpha,\beta}$ (w) is a Frechet space when we consider on it the topology generated by the system $\left\{\delta_n^{\alpha,\beta}\right\}_{n \in \mathbb{N}}$ of seminorms. It is clear that $B_{\alpha,\beta}^a$ $_{\alpha,\beta}^{\alpha}(w)$ is continuously contained in $B_{\alpha,\beta}^b$ $\begin{array}{llll} \n\frac{b}{\alpha,\beta} & (w) & \text{when} & 0 < a < b. \n\end{array}$ The union space

$$
B_{\alpha,\beta}(w) = \bigcup_{\alpha>0} B_{\alpha,\beta}^{b}(w)
$$

is endowed with the inductive topology.

For every $x \in (0, \infty)$, the Hankel type translation τ_x defines a continuous linear mapping from $B_{\alpha,\beta}(w)$ into itself. Then we can define the Hankel type convolution $T \nleftrightarrow \phi$ of $T \in B_{\alpha,\beta}(w)'$, the dual space of $B_{\alpha,\beta}(w)$ and $\phi \in B_{\alpha,\beta}(w)$ by $(T \# \phi) (x) = \langle T, \tau_x \phi \rangle, \quad x \in [0, \infty)$.

By $\mathcal{E}_{\alpha,\beta}(w)$ we denote the space of pointwise multipliers of $B_{\alpha,\beta}(w)$. $\mathcal{E}_{\alpha,\beta}(w)$ is endowed with the topology induced by the topology of pointwise convergence of the space $\mathfrak{T}\left(B_{\alpha,\beta}(w)\right)$ of continuous linear mapping from $B_{\alpha,\beta}(w)$ into itself. The space $\mathcal{E}_{\alpha,\beta}(w)'$ dual of $\mathcal{E}_{\alpha,\beta}(w)$ is characterized as the subspace of $B_{\alpha,\beta}(w)'$ defining Hankel type convolution operators on $B_{\alpha,\beta}(w)$.

Throughout this paper we always denote by C a suitable positive constant that can change from one line to another one.

The space $\mathcal{H}_{\alpha,\beta}(w)$

In the sequel w is a function in M. We now introduce the function spaces $\mathcal{H}_{\alpha,\beta}(w)$. A function $\phi \in L_{1,\alpha,\beta}$ is in $\mathcal{H}_{\alpha,\beta}$ (w) when ϕ and $h_{\alpha,\beta}$ (ϕ) are smooth functions and, for every $m, n \in \mathbb{N}$,

$$
u_{m,n}(\phi) = \sup_{x \in (0,\infty)} e^{m \, w(x)} \left| \left(\frac{1}{x} \, D\right)^n \, \phi \left(x\right) \right| < \infty,
$$

and

$$
v_{m,n}^{\alpha,\beta}(\phi) = \sup_{x \in (0,\infty)} e^{m \, w(x)} \, \left| \left(\frac{1}{x} \, D\right)^n \, h_{\alpha,\beta}(\phi) \left(x\right) \right| < \infty.
$$

On $\mathcal{H}_{\alpha,\beta}$ (w) we consider the topology generated by the family

$$
\left\{u_{m,n}, v_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}
$$

of semi-norms.

In the following we establish some properties of $\mathcal{H}_{\alpha,\beta}(w)$ that can be proved by invoking well-known properties of the Hankel type transformation $h_{\alpha,\beta}$ and the conditions imposed on the function w .

Proposition 2.1 : (i) The space $\mathcal{H}_{\alpha,\beta}(w)$ is a Frechet space and it is continuously contained in $\mathcal{H}_{-1/2}$. Moreover if $w(x) = \log(1+x)$, $x \in [0,\infty)$, then $\mathcal{H}_{\alpha,\beta}(w) =$ $\mathcal{H}_{-1/2}$, where the equality is algebraical and topological.

(ii) The Hankel type transformation $h_{\alpha,\beta}$ is an automorphism of $\mathcal{H}_{\alpha,\beta}(w)$,

(iii) The Bessel type operator $\Delta_{\alpha,\beta} = x^{4\beta-2} D x^{4\alpha} D$ defines a continuous linear mapping from $\mathcal{H}_{\alpha,\beta}(w)$ into itself.

(iv) If P is a polynomial, then the mapping $\phi \to P(x^2)$ ϕ is linear and continuous from $\mathcal{H}_{\alpha,\beta}(w)$ into itself.

We now introduce a new family of seminorms on $\mathcal{H}_{\alpha,\beta}(w)$ that is equivalent to $\left\{u_{m,n}, \nu_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$ and that will be very useful in the sequel.

Proposition 2.2: For every $m, n \in \mathbb{N}$, we define

$$
A_{m,n}^{\alpha,\beta}(\phi) = \sup_{x \in (0,\infty)} e^{mw(x)} \left| \Delta_{\alpha,\beta}^n \phi(x) \right|, \phi \in \mathcal{H}_{\alpha,\beta}(w),
$$

and

$$
B_{m,n}^{\alpha,\beta}(\phi) = \sup_{x \in (0,\infty)} e^{mw(x)} \big| \Delta_{\alpha,\beta}^n h_{\alpha,\beta}(\phi)(x) \big|, \quad \phi \in \mathcal{H}_{\alpha,\beta}(\phi),
$$

where $\Delta_{\alpha,\beta}$ represents the Bessel type operator $x^{4\beta-2}$ D $x^{4\alpha}$ D. The family $\left\{A_{m,n}^{\alpha,\beta}, B_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$ of semi-norms generates the topology of $\mathcal{H}_{\alpha,\beta}(w)$.

Proof: Proposition 2.1 (ii) and (iii) imply that the topology defined on $\mathcal{H}_{\alpha,\beta}(w)$ by $\left\{u_{m,n}, v_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$ is stronger than the one induced on it by $\left\{A_{m,n}^{\alpha,\beta}, B_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$.

Now we will see that $\left\{A_{m,n}^{\alpha,\beta}, B_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$ generates on $\mathcal{H}_{\alpha,\beta}(w)$ a topology finer than the one defined on it by $\left\{u_{m,n}, \nu_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$.

For every $k \in \mathbb{N}$ and $\phi \in \mathcal{H}_{\alpha,\beta}(w)$, we have that

$$
\left(\frac{1}{x} D\right)^k \phi \left(x\right) = x^{-2(\alpha - \beta) - 2k} \int_0^x x_k \int_0^{x_k} x_{k-1} \dots \int_0^{x_2} x_1^{4\alpha} \Delta_{\alpha,\beta}^k \phi \left(x_1\right) dx_1 \dots dx_k, \ x \in (0, \infty), \tag{2.1}
$$

and

$$
\left(\frac{1}{x} D\right)^k \phi(x) =
$$
\n
$$
(-1)^k x^{-2(\alpha-\beta)-2k} \int_x^\infty x_k \int_{x_k}^\infty x_{k-1} \dots \int_{x_2}^\infty x_1^{4\alpha} \Delta_{\alpha,\beta}^k \phi(x_1) dx_1 \dots dx_k, x \in (0, \infty). (2.2)
$$
\nTo prove (2.1) and (2.2), we must proceed individually. We will show that (2.1). To see

To prove (2.1) and (2.2) , we must proceed inductively. We will show that (2.1) . To see (2.2) , we can argue in a similar way.

Formula (2.1) holds when $k = 1$. Infact, according to Proposition 2.1 (i) and by [1, Lemma 8 b], it has, for every $\phi \in \mathcal{H}_{\alpha,\beta}(w)$

$$
h_{3\alpha,\beta}\left(\left(\frac{1}{x} D\right)\phi\right) = -h_{\alpha,\beta}\left(\phi\right). \tag{2.3}
$$

Moreover, by partial integration and by $[20(7)$, Chapter 5, since the function $z^{\alpha+\beta}$ $J_{\alpha-\beta}$ (z) is bounded on $(0, \infty)$, it has, for every $y \in (0, \infty)$ and $\phi \in \mathcal{H}_{\alpha,\beta}(w)$,

$$
h_{3\alpha,\beta} \left(x^{-6\alpha - 2\beta} \int_0^x x_1^{4\alpha} \Delta_{\alpha,\beta} \phi \left(x_1 \right) dx_1 \right) (y) \tag{2.4}
$$

= $-y^{-2} \int_0^\infty \frac{d}{dx} \left((xy)^{-(\alpha - \beta)} J_{\alpha - \beta} \left(xy \right) \right) \int_0^x x_1^{4\alpha} \Delta_{\alpha,\beta} \phi \left(x_1 \right) dx_1 dx$
= $y^{-2} h_{\alpha,\beta} \left(\Delta_{\alpha,\beta} \phi \right) (y)$
= $-h_{\alpha,\beta} \left(\phi \right) (y).$ (2.4)

From (2.3) and (2.4) we deduce that (2.1) is true for every $\phi \in \mathcal{H}_{\alpha,\beta}$ (w) when $k = 1$.

We now suppose that $l \in \mathbb{N}$ and that, for every $\phi \in \mathcal{H}_{\alpha,\beta}(w)$,

we have

$$
\left(\frac{1}{x} D\right)^l \phi \left(x\right) = x^{-2(\alpha - \beta) - 2l} \int_0^x x_l \int_0^{xl} x_{l-1} \dots \int_0^{x_2} x_1^{4\alpha} \Delta_{\alpha,\beta}^l \phi \left(x_1\right) dx_l \dots dx_1,
$$
\n
$$
x \in (0, \infty).
$$
\n(2.5)

We have to see that (2.5) holds when l is replaced by $l + 1$ for every $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. Let $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. According to [1, Lemma 8], we can write

$$
\left(\frac{1}{x} D\right)^{l+1} \phi = (-1)^{l+1} h_{\alpha-\beta+l+1} (h_{\alpha,\beta} \phi).
$$

On the other hand, it is easy to see that the induction hypothesis (2.5) it deduces that, since $\Delta_{\alpha,\beta} \phi \in \mathcal{H}_{\alpha,\beta} (w)$, Proposition 2.1,

$$
x^{-2(\alpha-\beta)-2(l+1)}\int_{0}^{x} x_{l+1} \int_{0}^{x_{l+1}} x_l \dots \int_{0}^{x_2} x_1^{4\alpha} \Delta_{\alpha,\beta}^{l+1} \phi(x_1) dx_1 \dots dx_{l+1}
$$

$$
= \Lambda_{\alpha,\beta,l} \left(\left(\frac{1}{x} D \right)^l \Delta_{\alpha,\beta} \phi \right) (x), \ x \in (0,\infty) \tag{2.6}
$$

where $\Lambda_{\alpha,\beta}$ denotes the operator defined by

$$
\left(\Lambda_{\alpha,\beta}\,\psi\right)(x) = x^{-6\alpha-2\beta} \int_0^x t^{2(\alpha-\beta)+l} \,\psi\left(t\right) dt, \ x \in (0,\infty) \text{, for every } \psi \in \mathcal{H}_{\alpha,\beta}\left(w\right).
$$

Moreover, from (2.3) , it follows that

$$
\left(\frac{1}{x} D\right)^l \Delta_{\alpha,\beta} \phi = \Delta_{\alpha,\beta,l} \left(\frac{1}{x} D\right)^l \phi . \tag{2.7}
$$

On the other hand, by partial integration and by [1, Lemma 8b] we obtain that, for every $\psi \in \mathcal{H}_{-1/2}$,

$$
h_{\alpha,\beta,l+1} \left(\Lambda_{\alpha,\beta,l} \Delta_{\alpha,\beta,l} \psi \right) (y)
$$

= $-y^{-2} \int_{0}^{\infty} \frac{d}{dx} \left((xy)^{-\alpha+\beta-l} J_{\alpha-\beta+l}(xy) \right) \int_{0}^{x} t^{2(\alpha-\beta)+2l+1} \Delta_{\alpha,\beta,l} \psi(t) dt dx$
= $-h_{\alpha,\beta,l}(\psi)(y)$, $y \in (0,\infty)$.

Hence

$$
\Lambda_{\alpha,\beta,l} \Delta_{\alpha,\beta,l} \psi = \left(\frac{1}{x} D\right) \psi, \psi \in \mathcal{H}_{-1/2} . \tag{2.8}
$$

From (2.6) , (2.7) and (2.8) , according to proposition 2.1 (i), it implies that

$$
\left(\frac{1}{x} D\right)^{l+1} \phi(x) =
$$
\n
$$
x^{-2(\alpha-\beta)-2(l+1)} \int_0^x x_{l+1} \int_0^{x_{l+1}} x \dots \int_0^{x_2} x_1^{4\alpha} \Delta_{\alpha,\beta}^{l+1} \phi(x_1) dx_1 \dots dx_{l+1}, \ x \in (0, \infty).
$$

Thus (2.1) is proved.

Now let $m, n \in \mathbb{N}$. Assume that $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. From (2.1) it follows that

$$
e^{mw(x)}\left|\left(\frac{1}{x}D\right)^n\phi(x)\right|
$$

\n
$$
\leq C \sup_{Z \in (0,\infty)} |\Delta_{\alpha,\beta}^n \phi(z)|x^{-2(\alpha-\beta)-2n} \int_0^x x_n \int_0^{x_n} x_{n-1} \dots \int_0^{x_2} x_1^{4\alpha} dx_1 \dots dx_n
$$

\n
$$
\leq C \sup_{Z \in (0,\infty)} |\Delta_{\alpha,\beta}^n \phi(z)|, \qquad x \in (0,1).
$$

Also, by using (2.2) , since w is increasing and it satisfies the (iii) property, we obtain for $l \in \mathbb{N}$ large enough,

$$
e^{mw(x)}\left|\left(\frac{1}{x}D\right)^n\phi(x)\right| \leq x^{-2(\alpha-\beta)-2n} \int_{x}^{\infty} x_n \int_{x_n}^{\infty} x_{n+1} \dots \int_{x_2}^{\infty} x_1^{4\alpha} e^{mw(x_1)}\left|\Delta_{\alpha,\beta}^n\phi(x_1)\right|
$$

$$
\leq C \sup_{z \in (0,\infty)} e^{(m+1)w(z)}\left|\Delta_{\alpha,\beta}^n\phi(z)\right|, \quad x \geq 1.
$$

Hence, it concludes that, for a certain $l \in \mathbb{N}$,

$$
u_{m,n}(\phi) \leq C A_{m+l,n}^{\alpha,\beta}(\phi).
$$

According to Proposition 2.1 (ii) $h_{\alpha,\beta}(\phi)$ is also in $\mathcal{H}_{\alpha,\beta}(w)$ and then the following inequality also holds

$$
v_{m,n}^{\alpha,\beta}(\phi) \leq C B_{m+l,n}^{\alpha,\beta}(\phi).
$$

Thus we prove that the topology generated by $\left\{A_{m,n}^{\alpha,\beta},B_{m,n}^{\alpha,\beta}\right\}_{m,n\in\mathbb{N}}$ on $\mathcal{H}_{\alpha,\beta}(w)$ is finer than the one induced on it by $\{u_{m,n}, v_{m,n}\}_{m,n \in \mathbb{N}}^{\alpha,\beta}$ and thus the proof is completed.

Through the proof of Proposition 2.2 we also show the following characterizations of the space $\mathcal{H}_{\alpha,\beta}(w)$.

Proposition 2.3: A function $\phi \in \mathcal{H}_{\alpha,\beta}(w)$ if and only if $\phi \in \mathcal{H}_{-1/2}$ and ϕ satisfies one of the following three conditions:

(i) For every $m, n \in \mathbb{N}$, $A_{m,n}^{\alpha,\beta}(\phi) < \infty$ and $B_{m,n}^{\alpha,\beta}(\phi) < \infty$, (ii) For every $m, n \in \mathbb{N}$, $A_{m,n}^{\alpha,\beta}(\phi) < \infty$ and $v_{m,n}^{\alpha,\beta}(\phi) < \infty$, (iii) For every $m, n \in \mathbb{N}$, $u_{m,n}(\phi) < \infty$ and $B_{m,n}^{\alpha,\beta}(\phi) < \infty$. Moreover, the families of seminorms $\{A_{m,n}^{\alpha,\beta},B_{m,n}^{\alpha,\beta}\}_m$, $\{A_{m,n}^{\alpha,\beta},\nu_{m,n}^{\alpha,\beta}\}_m$ and $\left\{u_{m,n}, B_{m,n}^{\alpha,\beta}\right\}_{m,n \in \mathbb{N}}$ generates the topology of $\mathcal{H}_{\alpha,\beta}(w)$.

We now analyze the behavior of Hankel type translation operator on $\mathcal{H}_{\alpha,\beta}(w)$. **Proposition 2.4:** (i) Let $x \in (0, \infty)$. The Hankel type translation operator τ_x defines a continuous linear mapping from $\mathcal{H}_{\alpha,\beta}$ (w) into itself.

(ii) Let $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. The (nonlinear) mapping F_{ϕ} defined by $F_{\phi}(x) = \tau_x \phi$, $x \in$ $(0, \infty)$ is continuous from $[0, \infty)$ into $\mathcal{H}_{\alpha,\beta}(w)$.

Proof: (i) Let $\phi \in \mathcal{H}_{\alpha,\beta}(w)$ and $m, n \in \mathbb{N}$. Since $\Delta_{\alpha,\beta} \tau_x \phi = \tau_x \Delta_{\alpha,\beta} \phi$ ([12, Proposition 2.1]) and since w is increasing and it satisfies the property (i), we can write $e^{mw(y)}\left[\Delta^n_{\alpha,\beta}\right]$ $\binom{n}{\alpha,\beta}$ $(\tau_x \phi)$ (y) $\leq e^{mw(y)} \tau_x \left(\left| \Delta_{\alpha,\beta}^n \right| \right)$ $\binom{n}{\alpha,\beta}$ ϕ $\big|$ $\big)$ $\big(y\big)$ $\leq e^{m (w(y)-w(|x-y|))}$ $D(x, y, z) e^{mw(z)} \Big| \Delta_{\alpha,\beta}^n$ $\int_{\alpha,\beta}^{n} \phi(z) \Big| \frac{z^{4\alpha}}{2\alpha - \beta \Gamma(3)}$ $\sqrt{2^{\alpha-\beta}\Gamma(3\alpha+\beta)}$ dz $x+y$ $|x-y|$ $\leq e^{mw(x)}$ Sup $z \in (0, \infty)$ $e^{mw(z)}\left|\Delta^n_{\alpha,\beta}\right|$ $\begin{array}{c} n \ a,\beta \end{array} \phi(z)$ | D (x,y,z) $\frac{8}{1}$ $\boldsymbol{0}$ $z^{4\alpha}$ $\sqrt{2^{\alpha-\beta}\Gamma(3\alpha+\beta)}}$ dz,

for each $y \in (0, \infty)$.

Hence by $[11, (2)]$, it concludes

$$
A_{m,n}^{\alpha,\beta}(\tau_x \phi) \le e^{mw(x)} A_{m,n}^{\alpha,\beta}(\phi). \tag{2.9}
$$

On the other hand, by $[3,(3,1)]$ and $[20, (7)$, Chapter 5, since the function $z^{-(\alpha-\beta)}J_{\alpha-\beta}(z)$ is bounded on $(0,\infty)$, it follows

$$
e^{mw(y)} \left| \left(\frac{1}{y} D\right)^m h_{\alpha,\beta} \left(\tau_x \phi\right)(y) \right|
$$

= $e^{mw(y)} \left| \left(\frac{1}{y} D\right)^n \left(2^{\alpha-\beta} \Gamma(3\alpha+\beta)(xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) h_{\alpha,\beta}(\phi)(y)\right) \right|$
 $\leq C \sum_{j=0}^n e^{mw(y)} \left| \left(\frac{1}{y} D\right)^{n-j} h_{\alpha,\beta}(\phi)(y) \right| x^{2j}, y \in (0, \infty).$

Then

$$
\nu_{m,n}^{\alpha,\beta} \left(\tau_x \phi \right) \le C \left(1 + x^{2n} \right) \sum_{j=0}^n \nu_{m,j}^{\alpha,\beta} \left(\phi \right) \,. \tag{2.10}
$$

http: // www.ijesrt.com**(C)** *International Journal of Engineering Sciences & Research Technology* From (2.9) and (2.10) we deduce that τ_x is continuous from $\mathcal{H}_{\alpha,\beta}(w)$ into itself. (ii) Let $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. Assume that $x_0 \in (0,\infty)$ and $m, n \in \mathbb{N}$. We can write for every $x \in [(x_0/2), (3x_0/2)]$ and $y \ge 2x_0$, $e^{mw(y)} \left[\Delta^n_{\alpha,\beta}\right]$ $\binom{n}{\alpha,\beta} \left((\tau_x \phi) - (\tau_{x_0} \phi) \right) (y)$ $\leq e^{(m+1)\{w(y)-w(y-(3x_0/2))\}-w(y)}$ Sup $z \in (0, \infty)$ $e^{(m+1)w(z)}\left|\Delta_{\alpha,\beta}^n\right|$ $\binom{n}{\alpha,\beta}$ $\phi(z)$ \times $|D(x, y, z) - D(x_0, y, z)|$ $y + (3x_0/2)$ $y-(3x_0/2)$ $z^{4\alpha}$ $\sqrt{2^{\alpha-\beta}\Gamma(3\alpha+\beta)}$ dz

$$
\leq 2 e^{(m+1)w(3x_0/2)-w(y)} \sup_{z\in(0,\infty)} e^{(m+1)w(z)} \left|\Delta_{\alpha,\beta}^n \phi(z)\right|.
$$

Hence, if $\epsilon > 0$, then there exists $y_1 \ge 2x_0$ such that, for every $x \in [(x_0/2), (3x_0/2)]$ and $y \ge y_1$,

$$
e^{mw(y)}\left|\Delta^n_{\alpha,\beta}\left((\tau_x\phi)-(\tau_{x_0}\phi)\right)(y)\right|<\epsilon.
$$

On the other hand, since w is increasing on $[0,\infty)$, it has

$$
\begin{split} \sup_{y \in (0, y_1)} e^{m w(y)} \left| \Delta_{\alpha, \beta}^n \left((\tau_x \phi) - (\tau_{x_0} \phi) \right) (y) \right| \\ \leq e^{m w(y_1)} \sup_{y \in (0, y_1)} \left| \Delta_{\alpha, \beta}^n \left((\tau_x \phi) - (\tau_{x_0} \phi) \right) (y) \right|. \end{split}
$$

Therefore, according to [12, p.359], since $\Delta_{\alpha,\beta}$ is a continuous operator from $\mathcal{H}_{-1/2}$ into itself, we deduce that if $\epsilon > 0$, then

$$
\sup_{y\,\in\,(0,y_1)}e^{mw(y)}\left|\Delta^n_{\alpha,\beta}\left((\tau_x\phi)-(\tau_{x_0}\phi)\right)(y)\right|<\,\epsilon,
$$

provided that $x \in (0, \infty)$ and $|x - x_0| < \delta$, for some $\delta > 0$.

Thus we conclude that, for every $\epsilon > 0$, there exists $\delta > 0$ for which

$$
A_{m,n}^{\alpha,\beta}\left(\tau_x\phi-\tau_{x_0}\phi\right) < \epsilon,
$$

when $x \in (0, \infty)$ and $|x - x_0| < \delta$.

Moreover, the Leibniz rule and again $[3,(3.1)]$ and $[20(7),$ Chapter 5] lead to

$$
\left(\frac{1}{y}\frac{d}{dy}\right)^n \left(h_{\alpha,\beta}\left(\tau_x\phi\right) - \tau_{x_0}\phi\left(y\right)\right)
$$
\n
$$
= 2^{\alpha-\beta}\Gamma(3\alpha+\beta)\sum_{j=0}^n {n \choose j} (-1)^j \left(\frac{1}{y}\frac{d}{dy}\right)^{n-j} h_{\alpha,\beta}\left(\phi\right)\left(y\right)
$$
\n
$$
\times \left(x^{2j}\left(xy\right)^{-\alpha+\beta-j} J_{\alpha-\beta+j}\left(xy\right) - x_0^{2j}\left(x_0y\right)^{-\alpha+\beta-j} J_{\alpha-\beta+j}\left(x_0y\right)\right), \quad x, y \in (0, \infty).
$$

Hence, the boundedness of the function $z^{-(\alpha-\beta)}J_{\alpha-\beta}(z)$, $z \in (0,\infty)$, implies that if $\epsilon > 0$,

$$
e^{mw(y)}\left|\left(\frac{1}{y}\frac{d}{dy}\right)^n \left(h_{\alpha,\beta}\left(\tau_x\phi - \tau_{x_0}\phi\right)(y)\right)\right|
$$

$$
\leq C e^{-w(y)} \sum_{j=0}^n \left(x^{2j} + x_0^{2j}\right) v_{m+1,n-j}^{\alpha,\beta}\left(\phi\right) < \epsilon,
$$

for each $x \in (0, 2x_0)$ and $y \ge y_1$, where y_1 is a large enough positive number.

On the other hand, since the function $f_j(x, y) = 2^{2j} (xy)^{-\alpha + \beta - j} J_{\alpha - \beta + j} (xy)$, $x, y \in [0, \infty)$, is continuous (and hence uniformly continuous in each compact subset of $[0, \infty) \times [0, \infty)$, for every $j \in \mathbb{N}$, if $\epsilon > 0$ we can find $\delta > 0$ such that $|f_j(x, y) - f(x, y)|$ $|f_j(x_0, y)| < \epsilon$, for every $y \in [0, y_1]$, $x \in [0, \infty)$, $|x - x_0| < \delta$ and $j = 0, \dots, n$. Then

$$
\sup_{y \in (0,y_1)} e^{mw(y)} \left| \left(\frac{1}{y} \frac{d}{dy} \right)^n \left(h_{\alpha,\beta} \tau_x \phi - \tau_{x_0} \phi(y) \right) \right| \le C \epsilon \sum_{j=0}^n u_{m,j}^{\alpha,\beta}(\phi),
$$

for every $x \in (0, \infty)$ and $|x - x_0| < \delta$.

Thus, it is concluded that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$
u_{m,n}^{\alpha,\beta}(\tau_x\phi-\tau_{x_0}\phi) < \epsilon,
$$

provided that $x \in (0, \infty)$ and $|x - x_0| < \delta$.

Hence F_{ϕ} is a continuous function on x_0 .

To see that F_{ϕ} is continuous in $x = 0$, we can proceed in a similar way.

Thus proof is completed.

 Next, we study the pointwise multiplication and the Hankel type convolution on $\mathcal{H}_{\alpha,\beta}$ (w).

Proposition 2.5: The bilinear mappings defined by

$$
(\phi,\psi)\,\rightarrow\,\phi\psi
$$

and

 $(\phi, \psi) \rightarrow \phi \# \psi$

are continuous from $\mathcal{H}_{\alpha,\beta}(w) \times \mathcal{H}_{\alpha,\beta}(w)$ into $\mathcal{H}_{\alpha,\beta}(w)$.

Proof: By virtue of the interchange formula [12, Theorem 2d]

$$
h_{\alpha,\beta}\left(\phi\#\psi\right)=\;h_{\alpha,\beta}\left(\phi\right)h_{\alpha,\beta}\left(\psi\right),\qquad\phi,\psi\;\in\;\mathcal{H}_{\alpha,\beta}\left(w\right),
$$

the continuity of the pointwise multiplication mapping is equivalent to the one of the Hankel type convolution mapping.

Let $m, n \in \mathbb{N}$. Assume that $\phi, \psi \in \mathcal{H}_{\alpha,\beta}(w)$, we can write, from the Leibniz rule, that

$$
u_{m,n}(\phi\psi) \leq C \sum_{j=0}^{n} u_{m,n,j}(\phi) u_{0,j}(\psi).
$$

On the other hand, since $\Delta_{\alpha,\beta}$ ($\phi \neq \psi$) = $(\Delta_{\alpha,\beta} \phi) \neq \psi$ [14, Proposition 2.2] and since w is increasing on $[0, \infty)$ and it satisfies the property (i) of Section 1, it has

$$
e^{mw(x)} |\Delta_{\alpha,\beta}^{n} h_{\alpha,\beta} (\phi \psi) (x)|
$$

\n
$$
= e^{mw(x)} |((\Delta_{\alpha,\beta}^{n} h_{\alpha,\beta} (\phi)) + h_{\alpha,\beta} (\psi)) (x)|
$$

\n
$$
\leq e^{mw(x)} \int_{0}^{\infty} |\Delta_{\alpha,\beta}^{n} (h_{\alpha,\beta} \phi) (y)| e^{-mw(|x-y|)}
$$

\n
$$
\times \int_{|x-y|}^{x+y} D(x,y,z) |h_{\alpha,\beta} (\psi) (z)| e^{mw(z)} \frac{z^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy
$$

\n
$$
\leq \int_{0}^{\infty} |\Delta_{\alpha,\beta}^{n} (h_{\alpha,\beta} \phi) (y)| e^{mw(y)} \int_{|x-y|}^{x+y} D(x,y,z) |h_{\alpha,\beta} (\psi)(z)| e^{mw(z)}
$$

\n
$$
\times \frac{z^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dz \cdot \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy, x \in (0, \infty).
$$

Hence, since w verifies the property (i) of Section 1 and by taking into account [11], we can conclude

$$
B_{m,n}^{\alpha,\beta}(\phi\psi) \leq C B_{m+l,n}^{\alpha,\beta}(\phi) B_{m,0}^{\alpha,\beta}(\psi) \text{, for some } l \in \mathbb{N}.
$$

By virtue of Proposition 2.3, we have proved that the pointwise multiplication defines a continuous mapping from

$$
\mathcal{H}_{\alpha,\beta}(w) \times \mathcal{H}_{\alpha,\beta}(w) \text{ into } \mathcal{H}_{\alpha,\beta}(w).
$$

Thus the proof is completed.

Remark 1: The last proposition shows that each function in $\mathcal{H}_{\alpha,\beta}(w)$ defines a multiplier in $\mathcal{H}_{\alpha,\beta}$ (w). Also, in the proof of Proposition 2.4, it was established that for every $x \in (0, \infty)$ the function f_x defined by

$$
f_x(y) = (xy)^{-(\alpha-\beta)}J_{\alpha-\beta}(xy), \quad y \in (0,\infty),
$$

is a multiplier of $\mathcal{H}_{\alpha,\beta}(w)$.

In [2] we introduced the space $B_{\alpha,\beta}(w)$ (see Section 1 for definitions). $B_{\alpha,\beta}(w)$ can be considered as a Beurling type function space for the Hankel $h_{\alpha,\beta}$ transformation. In the following we establish that $B_{\alpha,\beta}(w)$ is dense subset of $\mathcal{H}_{\alpha,\beta}(w)$.

Proposition 2.6: The space $B_{\alpha,\beta}(w)$ is continuously contained in $\mathcal{H}_{\alpha,\beta}(w)$. Moreover, $B_{\alpha,\beta}(w)$ is a dense subspace of $\mathcal{H}_{\alpha,\beta}(w)$.

Proof: Let $\phi \in B^a_{\alpha,\beta}$ $_{\alpha,\beta}^a(w)$, where $a > 0$. Since ϕ and $h_{\alpha,\beta}(\phi) \in L_{\alpha,\beta,1}$, according to [11, Corollary 2], it has

$$
\phi(x) = \int\limits_{0}^{\infty} (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) h_{\alpha,\beta}(\phi)(y) y^{4\alpha} dy, \qquad x \in (0, \infty).
$$

Hence by invoking [20 (7), Chapter 5], since $z^{-(\alpha-\beta)}J_{\alpha-\beta}(z)$ is a bounded function on $(0, \infty)$ and w satisfies the property (iii) of Section 1 for every $m, n \in \mathbb{N}$, we can find $l \in \mathbb{N}$ for which

$$
u_{m,n}(\phi) \le C \, \operatorname{Sup}_{x \in (0,a)} e^{mw(x)} \int_0^\infty y^{2n+4\alpha} \left| h_{\alpha,\beta}(\phi)(y) \right| dy \le C \, \delta_l^{\alpha,\beta}(\phi). \tag{2.11}
$$
\nHere C is a positive constant that is not dependent on ϕ .

By virtue of the Paley-Wiener type theorem for the Hankel type transform on $B_{\alpha,\beta}^a$ $_{\alpha,\beta}^{a}\left(w\right)$ ([2, Proposition 2.6]), $h_{\alpha,\beta}(\phi)$ is an even entire function and for every $m \in \mathbb{N}$, there exists $C_m > 0$ for which

$$
\left| h_{\alpha,\beta} \left(\phi \right) (x+iy) \right| \le C_m \, e^{-mw(x)+(a+1)|y|} \,, \ x, y \in \mathbb{R}.
$$
 (2.12)

According to the well-known Cauchy integral formula, we can write

$$
\frac{d^{l}}{dx^{l}} h_{\alpha,\beta}(\phi)(x) = \frac{l!}{2\pi i} \int_{C_x} \frac{h_{\alpha,\beta}(\phi)(z)}{(z-x)^{l+1}} dz, \ l \in \mathbb{N} \ and \ x \in \mathbb{R}, \tag{2.13}
$$

where C_x represents the circled path having bi-parametric representation $z = x + e^{i\theta}$, $\theta \in [0, 2\pi)$.

Let $m, n \in \mathbb{N}$. From (2.12) and (2.13), it follows, since w satisfies the property (i), that

$$
\left|\frac{d^n}{dx^n}h_{\alpha,\beta}(\phi)(x)\right|\leq C\int\limits_0^{2\pi}e^{-mw(x+\cos\theta)+(a+1)|\sin\theta|}d\theta\leq Ce^{-mw(x)},\ \ x\geq 1.
$$

Thus, it follows

$$
\left|\left(\frac{1}{x}\frac{d}{dx}\right)^n h_{\alpha,\beta}(\phi)(x)\right| \leq C e^{-mw(x)}, \qquad x \geq 1.
$$

Moreover, by using again the above-mentioned properties of the Bessel type functions, we have

$$
\left|\left(\frac{1}{x}\frac{d}{dx}\right)^n h_{\alpha,\beta}(\phi)(x)\right| \leq C \int_0^a y^{2n+4\alpha} |\phi(y)| dy \leq C u_{0,0}(\phi), \ x \in (0,1).
$$

Thus we conclude that $v_{m,n}^{\alpha,\beta}(\phi) < \infty$.

We have proved that $B_{\alpha,\beta}^a(w) \subset \mathcal{H}_{\alpha,\beta}(w)$.

To see that $B_{\alpha,\beta}^a(w)$ is continuously contained in $\mathcal{H}_{\alpha,\beta}(w)$ we will use the closed graph theorem. Assume that $\{\phi_v\}_{v \in \mathbb{N}}$ is a sequence in $B_{\alpha,\beta}^a(w)$ such that $\phi_v \to \phi$ as $v \to \infty$, in $B_{\alpha,\beta}^a(w)$ and $\phi_v \to \psi$ as $v \to \infty$, in $\mathcal{H}_{\alpha,\beta}(w)$. It is clear that $\phi_v(x) \to \psi(x)$ as $v \to \infty$ for every $x \in (0, \infty)$. Moreover, from (2.11) we deduce that $\phi_v(x) \to \phi(x)$ as $v \to \infty$ for each $x \in (0, \infty)$. Hence $\phi = \psi$. Thus we show that $B_{\alpha,\beta}^a(w) \subset \mathcal{H}_{\alpha,\beta}(w)$ is continuous.

We now see that $v_{\alpha,\beta}(w)$ is a dense subset of $\mathcal{H}_{\alpha,\beta}(w)$. According to [2, Proposition 2.18] we choose $\psi \in B^2_{\alpha,\beta}(w)$ such that $0 \le \psi \le 1$ and $\psi(x) = 1, x \in (0,1)$. $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. We define for Assume that every $l \in \mathbb{N} - \{0\}$, $\psi_l(x) = \psi(x/l)$, $x \in (0, \infty)$ and $\phi_l = \psi_l \phi$. Let $m, n \in \mathbb{N}$. The Leibniz rule leads to, for every $l \in \mathbb{N} - \{0\}$,

$$
e^{mw(x)}\left|\left(\frac{1}{x} D\right)^n \left(\phi_l \left(x\right) - \phi(x)\right)\right| \leq S_l^1(x) + S_l^2(x), \qquad x \in (0, \infty),
$$

where

$$
S_l^1(x) = \sum_{j=0}^{n-1} {n \choose j} e^{mw(x)} \left| \left(\frac{1}{x} D\right)^j \phi(x) \right| \left| \left(\frac{1}{x} D\right)^{n-j} \psi\left(\frac{x}{l}\right) \right|, \quad x \in (0, \infty),
$$

and

$$
S_l^2(x) = e^{mw(x)} \left| \left(\frac{1}{x} D\right)^l \phi(x) \right| \left| \psi\left(\frac{x}{l}\right) - 1 \right|, \quad x \in (0, \infty).
$$

Standard arguments allow us now to conclude that

$$
u_{m,n}(\phi_l - \phi) \to 0, \quad \text{as } l \to \infty.
$$

On the other hand, by [11, Theorem 2d], since $\psi_l(0) = 1$, $l \in N - \{0\}$,

we can write

$$
\Delta_{\alpha,\beta}^{n} h_{\alpha,\beta} (\phi_{l} - \phi) (x).
$$
\n
$$
= \left(h_{\alpha,\beta} (\psi_{l}) \# \Delta_{\alpha,\beta}^{n} h_{\alpha,\beta} (\phi) \right) (x) - \Delta_{\alpha,\beta}^{n} h_{\alpha,\beta} (\phi) (x)
$$
\n
$$
= \int_{0}^{\infty} h_{\alpha,\beta} (\psi_{l}) (y) \left(\tau_{x} \left(\Delta_{\alpha,\beta}^{n} h_{\alpha,\beta} (\phi) \right) (y) - \Delta_{\alpha,\beta}^{n} h_{\alpha,\beta} (\phi) (x) \right) \frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dy,
$$

for each $x \in (0, \infty)$ and $l \in N - \{0\}$.

Fix
$$
l \in N - \{0\}
$$
. To simplify we denote by $\Phi = \Delta_{\alpha,\beta}^n h_{\alpha,\beta}(\phi)$. It is not hard to see that
\n $h_{\alpha,\beta}(\psi_l)(y) = l^{2(3\alpha+\beta)} h_{\alpha,\beta}(\psi)(yl)$, $y \in (0, \infty)$. Then
\n
$$
\Delta_{\alpha,\beta}^n h_{\alpha,\beta}(\phi_l - \phi)(x)
$$
\n
$$
= \int_0^\infty h_{\alpha,\beta}(\psi)(y) \left(\tau_x(\Phi) \left(\frac{y}{l} \right) - \Phi(x) \right) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy, \qquad x \in (0, \infty).
$$

We now consider $d \in (0,1)$ that will be specified later. We divide the last integral into two parts.

According to [11 (2)], since *w* is an increasing function on [0, ∞), we have that

$$
\begin{split}\n&\left| \int_{x+l^{d}} h_{\alpha,\beta}(\psi)(y) \int_{|x-y/l|}^{x+y/l} D\left(x, \frac{y}{l}, z\right) \left(\Phi(z)\right) \right. \\
&\left. - \Phi(x)\right) \frac{z^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy \right| \\
&\leq C \int_{z \in (0,\infty)}^{Sup} |\Phi(z)| \int_{x+l^{d}}^{\infty} \left| h_{\alpha,\beta}(\psi)(y) \right| y^{4\alpha} dy \\
&\leq C \int_{x+l^{d}}^{\infty} e^{-(m+k)w(y)} y^{4\alpha} dy \cdot \frac{Sup}{z \in (0,\infty)} |\Phi(z)| \frac{Sup}{z \in (0,\infty)} \left| h_{\alpha,\beta}(\psi)(z) \right| e^{(m+k)w(z)} \\
&\leq C e^{-mw(z)} \int_{l^{d}}^{\infty} e^{-kw(y)} y^{4\alpha} dy \cdot \frac{Sup}{z \in (0,\infty)} |\Phi(z)| \frac{Sup}{z \in (0,\infty)} \left| h_{\alpha,\beta}(\psi)(z) \right| e^{(m+k)w(z)},\n\end{split}
$$

for every $x \in (0, \infty)$ and $k \in \mathbb{N}$.

Hence, since *w* satisfies the property (i) of Section 1, by choosing $k \in \mathbb{N}$ large enough it follows that

$$
\sup_{x \in (0,\infty)} \left| e^{mw(x)} \int_{x+l}^{\infty} h_{\alpha,\beta}(\psi)(y) \int_{|x-y/l|}^{x+y/l} D(x,y/l,z) (\Phi(z) - \Phi(x)) \right|
$$

$$
\times \frac{z^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha)} dy \right|
$$

$$
\leq C \int_{l^d}^{\infty} e^{-kw(y)} y^{4\alpha} dy \, \text{Sup}_{z \in (0,\infty)} |\Phi(z)| \, \text{Sup}_{z \in (0,\infty)} |h_{\alpha,\beta}(\psi)(z)| e^{(m+k)w(z)} \to 0,
$$

as $l \to \infty$

On the other hand, by again using [11, (2)], one obtains, for every $x \in (0, \infty)$,

$$
\begin{aligned}\n\left| e^{mw(x)} \int\limits_{0}^{x+l^{d}} h_{\alpha,\beta}(\psi)(y) \int\limits_{|x-y/l|}^{x+y/l} D(x,y/l,z) \left(\Phi(z) - \Phi(x) \right) \right. \\
&\left. \times \frac{z^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha + \beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha + \beta)} dy \right| \\
&\leq C \sup_{z \in (0,\infty)} \left| h_{\alpha,\beta}(\phi)(z) \right| e^{mw(x)} (x + l^{d})^{6\alpha + 2\beta} \sup_{|x-y/l| \leq z \leq x + y/l} \sup_{0 < y < x + l^{d}}\n\end{aligned}
$$

Moreover, we have that, for each $\eta \in (0, x + l^d)$ and $x \in (0, \infty)$,

$$
\left|\Phi\left(x+\frac{\eta}{l}\right)-\Phi\left(x\right)\right| \leq \int_{x}^{x+(n/l)} \left|\frac{d}{dt}\Phi(t)\right| dt
$$

$$
\leq \frac{1}{l}\left(x+l^d\right) \sup_{-x-l^d \leq \xi \leq x+l^d} \left|\left(\frac{d}{dt}\Phi\right)\left(x+\frac{\xi}{l}\right)\right|.
$$

Also, we can write

$$
\left|\Phi\left(x+\frac{\eta}{l}\right)-\Phi\left(x\right)\right|\leq\frac{1}{l}\left(x+l^d\right)\underset{-x-l^d\leq\xi\leq x+l^d}{Sup}\,\,\left|\left(\frac{d}{dt}\,\Phi\right)\left(x+\frac{\xi}{l}\right)\right|,
$$

for each $x \in (0, \infty)$ and $\eta \in (-x - l^d, 0)$.

If it is necessary above we consider the even and smooth extension of Φ to \mathbb{R} . Hence, it has

$$
\begin{aligned}\n\left| e^{mw(x)} \int\limits_{0}^{x+l^{d}} h_{\alpha,\beta}(\psi)(y) \int\limits_{|x-y/l|}^{x+y/l} D(x,y/l,z) \left(\Phi(z) - \Phi(x) \right) \right. \\
&\left. \times \frac{z^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dy \right| \\
&\leq C \sup_{z \in (0,\infty)} \left| h_{\alpha,\beta}(\psi)(z) \right| e^{mw(x)} \frac{1}{l} (x+l^{d})^{10\alpha+6\beta} \sup_{-x-l^{d} \leq \xi \leq x+l^{d}} \left| \left(\frac{1}{t} \frac{d}{dt} \Phi \right) \left(x + \frac{\xi}{l} \right) \right|\n\end{aligned}
$$

$$
\leq C \sup_{z \in (0,\infty)} \left| h_{\alpha,\beta} \left(\psi \right)(z) \right| e^{m w(x) - k w \left(x - \left(\frac{x}{l} \right) - l^{d-1} \right)} \frac{1}{l} (x + l^d)^{10\alpha + 6\beta}
$$

$$
\times \sup_{z \in (0,\infty)} \left| \frac{1}{z} \frac{d}{dz} \Phi(z) \right| e^{kw(z),}
$$

provided that $x \ge 2$, $k, l \in \mathbb{N}$ and $l \ge 2$. Note that if $x, l \ge 2$, $x \ge (l^d/(l-1))$. Then

$$
\begin{aligned}\n\left| e^{m w(x)} \int\limits_{0}^{x+l^{d}} h_{\alpha,\beta} \left(\psi \right) (y) \int\limits_{|x-y/t|}^{x+y/l} D \left(x, y/l, z \right) \left(\Phi \left(z \right) - \Phi(x) \right) \right. \\
&\left. \times \frac{z^{4\alpha}}{2^{\alpha-\beta} \Gamma \left(3\alpha + \beta \right)} \, dz. \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha + \beta)} \, dy \right| \\
&\leq C \, l^{d(10\alpha + 6\beta) - 1} \left(x + 1 \right)^{10\alpha + 6\beta} \, e^{m w(x) - k w \left[x - (x/l) - l^{d-1} \right].\n\end{aligned}
$$

when $x \geq 2$, $l, k \in \mathbb{N}$ and $l \geq 2$.

Since *w* is increasing on $[0, \infty)$ and *w* verifies the property (i), we have that

$$
w\left(x - \frac{x}{l} - l^{d-1}\right) \ge \frac{1}{2}w(x) - w(1), \qquad x \ge 2, \qquad l, k \in \mathbb{N} \text{ and } l \ge 2,
$$

hence by choosing k large enough, since w satisfies the property (i), we have

$$
\begin{vmatrix}\n\int_{0}^{x+l^{d}} h_{\alpha,\beta}(\psi)(y) & \int_{|x-y/l|}^{x+y/l} D(x,y/l,z) (\Phi(z) - \Phi(x)) \\
\int_{0}^{x+y/l} & \int_{0}^{z^{4\alpha}} \frac{z^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dy\n\end{vmatrix}
$$
\n
$$
\leq C l^{d(10\alpha+6\beta)-1}, \quad x \geq 2, \quad l, k \in \mathbb{N} \text{ and } l \geq 2.
$$

Assume now that $0 < d < 1/(10\alpha + 6\beta)$. Then we conclude that

$$
\sup_{x\geq 2} \left| e^{mw(x)} \int\limits_{0}^{x+l^{d}} h_{\alpha,\beta}(\psi)(y) \int\limits_{|x-y/l|}^{x+y/l} D(x,y/l,z) (\Phi(z) - \Phi(x)) \right|
$$

$$
\times \frac{z^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dy \right| \to 0, \text{ as } l \to \infty.
$$

By proceeding in a similar way we obtain that

$$
\sup_{0 \le x \le 2} \left| e^{m w(x)} \int_{0}^{x+l^{d}} h_{\alpha,\beta}(\psi)(y) \int_{|x-y/l|}^{x+y/l} D(x,y/l,z) (\Phi(z) - \Phi(x)) \right|
$$

$$
\times \frac{z^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dz \frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dy \right|
$$

$$
\le C \sup_{z \in (0,\infty)} \left| h_{\alpha,\beta}(\psi)(z) \right| \frac{1}{l} (2+l)^{10\alpha+\beta\beta} \sup_{z \in (0,\infty)} \left| \frac{1}{z} \frac{d}{dz} \Phi(z) \right| \to 0, \text{ as } l \to \infty,
$$

provided that $0 < d < 1(2^{\alpha-\beta}+4)$.

Thus, we deduce that

$$
B_{m,n}^{\alpha,\beta}(\phi_l-\phi)\to 0, \qquad \text{as } l\to\infty.
$$

By taking into account Proposition 2.3, the proof is now complete.

Remark 2: According to [2, Corollary 2.8], the Property (ii) (for w) is essential to establish the non-triviality of the space $B_{\alpha,\beta}(w)$. Indeed the function $\phi(x) =$ $e^{-x^2/2}$, $x \in [0,\infty)$ is in $\mathcal{H}_{\alpha,\beta}(w)$. (see [8, (10)]) provided that $w(x) \leq C x^l$, when x is large for some $l < 2$.

Next we establish a result concerning approximated identity in $\mathcal{H}_{\alpha,\beta}(w)$ involving Hankel type convolution. This property whose proof will be omitted can be proved following a procedure similar to the one employed to prove [3, Proposition 3.5] and [17].

Proposition 2.7: Assume that $\psi \in B_{\alpha,\beta}(w)$ and that $\int_0^\infty \psi(x) x^{4\alpha} dx = 2^{\alpha-\beta}$ $\psi(x) x^{4a} dx = 2^{a-p} \Gamma(3a +$ β). Then for every $\phi \in \mathcal{H}_{\alpha,\beta}(w)$, $\phi \# \psi_m \to \phi$, as $m \to \infty$, in $\mathcal{H}_{\alpha,\beta}(w)$ where, for each $m \in \mathbb{N}$, $\psi_m(x) = m^{6\alpha+2\beta} \psi(mx)$, $x \in (0, \infty)$.

Hankel type transformation and Hankel type convolution on the space $\mathcal{H}_{\alpha,\beta}(w)'$

In this section we study the Hankel type transformation and the Hankel type convolution on $\mathcal{H}_{\alpha,\beta}(w)'$, the dual space of $\mathcal{H}_{\alpha,\beta}(w)$. Our results can be seen as an extension of the ones presented in [12].

Suppose that f is a measurable function on $(0, \infty)$ such that, for some $k \in \mathbb{N}$,

$$
\int_{0}^{\infty} e^{-k w(x)} |f(x)| x^{4\alpha} dx < \infty,
$$

then f defines an element $T_f \in \mathcal{H}_{\alpha,\beta}(w)'$ by

$$
\langle T_f, \phi \rangle = \int\limits_0^\infty f(x) \; \phi(x) \; \frac{x^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} \; dx, \qquad \phi \, \in \, \mathcal{H}_{\alpha,\beta}(w).
$$

Indeed, for every $\phi \in \mathcal{H}_{\alpha,\beta}(w)$, it has

$$
\left|\langle T_f,\phi\rangle\right| \leq C\int\limits_0^\infty e^{-kw(x)}|f(x)|x^{4\alpha}\,dx\,u_{k,0}\,(\phi).
$$

In particular the space $\mathcal{H}_{\alpha,\beta}(w)$ can be identified with a subspace of $\mathcal{H}_{\alpha,\beta}(w)'$.

On the other hand, if $\phi \in \mathcal{H}_{\alpha,\beta}(w)$ then $\phi \in \varepsilon_{\alpha,\beta}(w)$, the space of pointwise multipliers of $B_{\alpha,\beta}(w)$. Indeed, let $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. Assume that $\psi \in B_{\alpha,\beta}^a$ $_{\alpha,\beta}^{\alpha}(w)$ with $a > 0$. Then $\phi(x) \psi(x) = 0, x \ge a$. Moreover for every $n \in \mathbb{N}$, $\delta_n^{\alpha,\beta}(\phi\psi) = \int_0^\infty e^{nw(x)} \left| h_{\alpha,\beta}(\phi\psi)(x) \right| x^{4\alpha} dx \leq C \delta_n^{\alpha,\beta}(\psi) v_{l,0}^{\alpha,\beta}(\phi),$

where $l \in \mathbb{N}$ is chosen large enough and it is not depending on ϕ . Note that we also have proved that $\mathcal{H}_{\alpha,\beta}(w)$ is continuously contained in $\varepsilon_{\alpha,\beta}(w)$. Hence, the dual space of $\varepsilon_{\alpha,\beta}$ (w)' of $\varepsilon_{\alpha,\beta}$ (w) $\subset \mathcal{H}_{\alpha,\beta}$ (w)'.

We define the Hankel type transformation on $\mathcal{H}_{\alpha,\beta}(w)'$ by transposition. That is, if $T \in \mathcal{H}_{\alpha,\beta}(w)'$, the Hankel type transform $h'_{\alpha,\beta}T$ of T is the element of $\mathcal{H}_{\alpha,\beta}(w)'$ given through

$$
\langle h'_{\alpha,\beta} T, \phi \rangle = \langle T, h_{\alpha,\beta} \phi \rangle, \qquad \phi \in \mathcal{H}_{\alpha,\beta}(w) .
$$

The generalized Hankel type transformation $h'_{\alpha,\beta}$ can be seen as an extension of the Hankel type transformation $h_{\alpha,\beta}$. Let $\psi \in \mathcal{H}_{\alpha,\beta}(w)$. Since $h_{\alpha,\beta}(w) \in \mathcal{H}_{\alpha,\beta}(w)$, $h_{\alpha,\beta}(\psi)$ defines an element $T_{h_{\alpha,\beta}(\phi)}$ of $\mathcal{H}_{\alpha,\beta}(w)'$ by

$$
\langle T\,h_{\alpha,\beta\,(\psi),\,\phi}\rangle=\int\limits_{0}^{\infty}\,h_{\alpha,\beta\,}(\psi)(x)\,\phi(x)\,\frac{x^{4\alpha}}{2^{\alpha-\beta}\,\Gamma(3\alpha+\beta)}\,dx,\,\,\phi\,\in\,\mathcal{H}_{\alpha,\beta}\,(w).
$$

Moreover, Parseval equality for Hankel type transformation leads to

$$
\langle T_{h_{\alpha,\beta}}(\psi), \phi \rangle = \int_{0}^{\infty} \psi(x) h_{\alpha,\beta}(\phi)(x) \frac{x^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dx,
$$

$$
= \langle T_{\psi}, h_{\alpha,\beta}(\phi) \rangle, \qquad \phi \in \mathcal{H}_{\alpha,\beta}(w).
$$

Thus, we have shown that $T_{h_{\alpha,\beta}(w)} = h'_{\alpha,\beta}(T_{\psi})$.

Now, we determine the Hankel type transform of the distributions in $\varepsilon_{\alpha,\beta}(w)'$.

Proposition 3.1: If $T \in \varepsilon_{\alpha,\beta}(w)'$, the Hankel type transform $h'_{\alpha,\beta}T$ coincides with the functional defined by the function

$$
F(x) = 2^{\alpha-\beta} \Gamma(3\alpha+\beta) \langle T(y), (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \rangle, \qquad x \in (0, \infty).
$$

Then $h'_{\alpha,\beta}$ T is a continuous function on $[0,\infty)$ and there exist $C > 0$ and $r \in \mathbb{N}$ for which

$$
\left| h'_{\alpha,\beta} \left(T \right) (x) \right| \leq C \, e^{rw(x)}, \qquad x \in (0, \infty).
$$

Proof : Let $T = \varepsilon_{\alpha,\beta}(w)'$. We have to see that

$$
\left(h'_{\alpha,\beta}(T),\phi\right) = \langle T,h_{\alpha,\beta}(\phi)\rangle = \int_{0}^{\infty} \langle T(y),(xy)^{-(\alpha-\beta)}J_{\alpha-\beta}(xy)\rangle \phi(x) x^{4\alpha} dx,
$$

very $\phi \in \mathcal{H}_{\alpha,\beta}(w).$ (3.1)

for every $\phi \in \mathcal{H}_{\alpha,\beta}(w)$.

In [2, Proposition 3.4] we proved that, for every $x \in (0, \infty)$, the function f_x defined by $f_x(y) = (xy)^{-(x-y)} J_{\alpha-\beta}(xy)$, $y \in (0, \infty)$ is in $\varepsilon_{\alpha,\beta}(w)$. Hence, we can define the function

$$
F(x) = \langle T(y), (xy)^{-(\alpha-\beta)}J_{\alpha-\beta}(xy) \rangle, \quad x \in [0,\infty).
$$

Thus *F* is continuous function on [0,∞). Indeed, let $x_0 \in [0, \infty)$. To See that F is continuous at x_{0} , it is sufficient to show that, for every $n \in \mathbb{N}$ and $\phi \in B_{\alpha,\beta}(w)$,

$$
\delta_n^{\alpha,\beta}\left(\phi(y)(xy)^{-(\alpha-\beta)}J_{\alpha-\beta}(xy)-(x_0y)^{-(\alpha-\beta)}J_{\alpha-\beta}(x_0y)\right)\to 0, \text{ as } x\to x_0.
$$

Assume that $n \in \mathbb{N}$ and $\phi \in B_{\alpha,\beta}(w)$. By virtue of [3, (3.4)], it follows for every $x, z \in [0, \infty)$,

$$
h_{\alpha,\beta} \left(\phi(y) \left(xy \right)^{-\alpha+\beta} J_{\alpha-\beta}(xy) - (x_0 y)^{-(\alpha-\beta)} J_{\alpha-\beta}(x_0 y) \right) (z)
$$

=
$$
\frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} \left(\tau_x \left(h_{\alpha,\beta} \phi \right) (z) - \tau_{x_0} \left(h_{\alpha,\beta} \phi \right) (z) \right).
$$

According to Proposition 2.4 (ii) and Proposition 2.6, the mapping G defined by

$$
G(x) = \tau_x \left(h_{\alpha,\beta} \phi \right), \qquad x \in [0,\infty),
$$

is continuous from [0,∞) into $\mathcal{H}_{\alpha,\beta}(w)$. Moreover, since w satisfies the property (iii), there exists $l \in \mathbb{N}$ such that

$$
\delta_n^{\alpha,\beta} \left(\left(\phi(x)^{-(\alpha-\beta)} J_{\alpha-\beta}(x) - (x_0)^{-(\alpha-\beta)} J_{\alpha-\beta}(x_0) \right) \right)
$$

=
$$
\frac{1}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} \int_0^\infty e^{n \, w(z)} \left[\tau_x \left(h_{\alpha,\beta} \, \phi \right) (z) - \tau_{x_0} \left(h_{\alpha,\beta} \, \phi \right) (z) \right] z^{4\alpha} \, dz
$$

$$
\leq C \, u_{n+l,0} \left(\tau_x \left(h_{\alpha,\beta} \, \phi \right) - \tau_{x_0} \left(h_{\alpha,\beta} \, \phi \right) \right), \qquad x \in [0, \infty).
$$

Hence,

$$
\delta_n^{\alpha,\beta} \left(\phi(y) \left((xy)^{-\alpha+\beta} J_{\alpha-\beta}(xy) - (x_0 y)^{-\alpha+\beta} J_{\alpha-\beta}(x_0 y) \right) \right) \to 0, \qquad \text{as } x \to x_0.
$$

Moreover, since $T \in \xi_{\alpha,\beta}(w)'$, there exists $C > 0$, $r \in \mathbb{N}$ and $\phi_{1,...,p}$, $\phi_r \in B_{\alpha,\beta}(w)$,

$$
|\langle T,\Phi\rangle| \leq C \max_{j=1,\dots,r} \delta_r^{\alpha,\beta} (\phi_j \Phi), \qquad \Phi \in \varepsilon_{\alpha,\beta}(w).
$$

In particular, since w has the property (iii) for every $x \in (0, \infty)$,

$$
\left| \langle T(y), (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \rangle \right| \le C \max_{j=1,2,\dots,r} \int_{0}^{\infty} e^{rw(x)} \left| \tau_{x} \left(h_{\alpha,\beta} \phi_{j} \right) (y) \right| y^{4\alpha} dy
$$

$$
\le C \max_{j=1,\dots,r} u_{r+l,0} \left(\tau_{x} \left(h_{\alpha,\beta} \phi_{j} \right) \right),
$$

for some $l \in \mathbb{N}$. Then by (2.9), it follows that

$$
\left| \langle T(y), (xy)^{-(\alpha-\beta)} J_{\alpha-\beta} (xy) \rangle \right| \le C e^{(r+l)w(x)} \max_{j=1,\dots,r} v_{r+l,0}^{\alpha,\beta} (\phi_j), x \in [0,\infty).
$$
 (3.2)

From (3.2), we infer that the integral in (3.1) is absolutely convergent for every $\phi \in$ $\mathcal{H}_{\alpha,\beta}(w)$.

Assume that $\phi \in \mathcal{H}_{\alpha,\beta}(w)$, It is clear that

$$
\lim_{b \to \infty} \int_{b}^{\infty} \langle T(y), \, (xy)^{-\alpha+\beta} J_{\alpha-\beta} (xy) \rangle \, \phi(x) \, x^{4\alpha} \, dx = 0
$$

Let $b > 0$, we can write

$$
\int_{0}^{\infty} \langle T(y), \quad (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \rangle \phi(x) x^{4\alpha} dx
$$

= $\lim_{n \to \infty} \langle T(y), \frac{b}{n} \sum_{j=1}^{n} \left(\frac{ib}{n} y\right)^{-\alpha+\beta} J_{\alpha-\beta}\left(\frac{ib}{n} y\right) \phi\left(\frac{ib}{n}\right) \left(\frac{ib}{n}\right)^{4\alpha} \rangle$ (3.3)

We are going to see that

$$
\int_{0}^{b} \left((xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \phi(x) x^{4\alpha} dx \right)
$$
\n
$$
= \lim_{n \to \infty} \frac{b}{n} \sum_{j=1}^{n} \left(\frac{jb}{n} y \right)^{-\alpha+\beta} J_{\alpha-\beta} \left(\frac{jb}{n} y \right) \phi \left(\frac{jb}{n} \right) \left(\frac{jb}{n} \right)^{4\alpha} \rangle.
$$

We are going to see that

$$
\int_{0}^{b} (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \phi(x) x^{4\alpha} dx
$$
\n
$$
= \lim_{n \to \infty} \frac{b}{n} \sum_{j=1}^{n} \left(\frac{jb}{n}y\right)^{-(\alpha-\beta)} J_{\alpha-\beta}\left(\frac{jb}{n}y\right) \phi\left(\frac{jb}{n}\right) \left(\frac{jb}{n}\right)^{4\alpha}.
$$

in the sense of convergence of $\varepsilon_{\alpha,\beta}$ (w).

Indeed, let $\psi \in B_{\alpha,\beta}(w)$ and $m \in \mathbb{N}$. It has, for some $l \in \mathbb{N}$,

$$
\delta_{m}^{\alpha,\beta} \left(\psi(y) \left(\int_{0}^{b} (xy)^{-\alpha+\beta} J_{\alpha-\beta} (xy) \phi(x) x^{4\alpha} dx \right. \\ - \frac{b}{n} \sum_{j=1}^{n} \left(\frac{jb}{n} y \right)^{-\alpha+\beta} J_{\alpha-\beta} \left(\frac{jb}{n} y \right) \phi \left(\frac{jb}{n} \right) \left(\frac{jb}{n} \right)^{4\alpha} \right) \right) \leq C u_{l,0} \left(h_{\alpha,\beta} \left(\psi(y) \left(\int_{0}^{b} (xy)^{-(\alpha-\beta)} J_{\alpha-\beta} (xy) \phi(x) x^{4\alpha} dx \right. \\ - \frac{b}{n} \sum_{j=1}^{n} \left(\frac{jb}{n} y \right)^{-\alpha+\beta} J_{\alpha-\beta} \left(\frac{jb}{n} y \right) \phi \left(\frac{jb}{n} \right) \left(\frac{jb}{n} \right)^{4\alpha} \right) \right) \right) \leq C u_{l,0} \left(\int_{0}^{b} \phi(x) x^{4\alpha} \tau_{x} (h_{\alpha,\beta} \psi) (z) dx \right) \left. - \frac{b}{n} \sum_{j=1}^{n} \phi \left(\frac{jb}{n} \right) \left(\frac{jb}{n} \right)^{4\alpha} \tau_{jb/n} (h_{\alpha,\beta} \psi) (z) \right).
$$

Note that from (2.9), it follows that

$$
e^{lw(z)}\iint_{0}^{b} \phi(x) x^{4\alpha} \tau_{x} (h_{\alpha,\beta} \psi) (z) dx - \frac{b}{n} \sum_{j=1}^{n} \phi\left(\frac{jb}{n}\right) \left(\frac{jb}{n}\right)^{4\alpha} \tau_{jb/n} (h_{\alpha,\beta} \psi) (z)
$$

$$
\leq C e^{-w(z)} \begin{pmatrix} \int_{0}^{b} |\phi(x)| x^{4\alpha} e^{(l+1)w(x)} dx \\ + \frac{b}{n} \sum_{j=1}^{n} |\phi\left(\frac{jb}{n}\right)| \left(\frac{jb}{n}\right)^{4\alpha} e^{(l+1)w(jb/n)} \end{pmatrix}
$$

$$
\leq C e^{-w(z)}, \quad z \in (0, \infty).
$$

Hence, if $\epsilon > 0$, there exists $z_0 \in (0, \infty)$ such that

$$
\sup_{z\geq z_0}e^{lw(z)}\left|\int_0^b\phi(x)\,x^{4\alpha}\,\tau_x\big(h_{\alpha,\beta}\,\psi\big)\,(z)\,dx-\frac{b}{n}\,\sum_{j=1}^n\phi\,\left(\frac{jb}{n}\right)\left(\frac{jb}{n}\right)^{4\alpha}\,\tau_{jb/n}\,\big(h_{\alpha,\beta}\,\psi\big)\,(z)\right|<\,\epsilon.
$$

On the other hand, since the function H defined by

$$
H(x,z) = \phi(x) x^{4\alpha} \tau_x \left(h_{\alpha,\beta} \psi \right)(z), \quad x, \quad z \in [0,\infty),
$$

is uniformly continuous in $(x, z) \in [0, b] \times [0, z_0]$, it has

$$
\lim_{n \to \infty} \frac{b}{n} \sum_{j=1}^{n} \phi\left(\frac{jb}{n}\right) \left(\frac{jb}{n}\right)^{4\alpha} \tau_x \left(h_{\alpha,\beta} \psi\right) \left(\frac{jb}{n}\right)
$$

$$
= \int_{0}^{b} \phi\left(x\right) x^{4\alpha} \tau_x \left(h_{\alpha,\beta} \psi\right)(x) dx,
$$

uniformly in $[0, x_0]$.

From the above arguments we conclude (3.4) in the sense of convergence in $\varepsilon_{\alpha,\beta}$ (w). Hence it has that

$$
\int_{0}^{b} \langle T(y), (xy)^{-\alpha+\beta} J_{\alpha-\beta}(xy) \rangle \, \phi(x) x^{4\alpha} \, dx = \langle T(y), \int_{0}^{b} (xy)^{-\alpha+\beta} J_{\alpha-\beta}(xy) \, \phi(x) \, x^{4\alpha} dx \rangle.
$$

Also,

$$
\lim_{b \to \infty} \int_{b}^{\infty} (xy)^{-\alpha + \beta} J_{\alpha - \beta} (xy) \phi(x) x^{4\alpha} dx = 0
$$

in the sense of convergence in $\varepsilon_{\alpha,\beta}$ (w).

(C) International Journal of Engineering Sciences & Research Technology http://www.ijesrt.com $[27826 - 2856]$

Indeed, assume that $b > 0$, $\psi \in B_{\alpha,\beta}(w)$ and $m \in \mathbb{N}$. For a certain $l \in \mathbb{N}$ we have that

$$
\delta_{m}^{\alpha,\beta}\left(\left(\psi(y)\int_{b}^{\infty}(xy)^{-\alpha+\beta}J_{\alpha-\beta}(xy)\phi(x)x^{4\alpha}dx\right)\right)
$$
\n
$$
\leq C u_{l,0}\left(h_{\alpha,\beta}\left(\psi(y)\int_{b}^{\infty}(xy)^{-\alpha+\beta}J_{\alpha-\beta}(xy)\phi(x)x^{4\alpha}dx\right)\right)
$$
\n
$$
\leq C \sup_{z\in(0,\infty)}e^{iw(z)}\left|\int_{b}^{\infty}\phi(x)\tau_{x}\left(h_{\alpha,\beta}\psi\right)(x)x^{4\alpha}dx\right|
$$
\n
$$
\leq C \int_{b}^{\infty}\left(\phi(x)\left|e^{iw(x)}x^{4\alpha}dx\,v_{l,0}^{\alpha,\beta}(\psi)\right)\right).
$$

Hence,

$$
\lim_{b\to\infty}\delta_m^{\alpha,\beta}\left(\psi(y)\int\limits_b^\infty (xy)^{-\alpha+\beta}\,J_{\alpha-\beta}\left(xy\right)\phi(x)\,x^{4\alpha}\,dx\,\right)=0.
$$

Now, standard arguments allow us to show that (3.1) holds.

Thus proof is completed.

Proposition 2.4 (i) allows us to define the Hankel type convolution $T \# \phi$ of $T \in$ $\mathcal{H}_{\alpha,\beta}(w)'$ and $\phi \in \mathcal{H}_{\alpha,\beta}(w)$ as follows

$$
(T\#\phi)(x) = \langle T, \tau_x \phi \rangle, \qquad x \in [0,\infty).
$$

Note that the last definition extends the Hankel type convolution from $\mathcal{H}_{\alpha,\beta}(w) \times \mathcal{H}_{\alpha,\beta}(w)$ to $\mathcal{H}_{\alpha,\beta}(w)' \times \mathcal{H}_{\alpha,\beta}(w)$. Indeed, let ϕ , $\psi \in \mathcal{H}_{\alpha,\beta}(w)$. We can write

$$
\left(T_{\phi} * \psi\right)(x) = \left\langle T_{\phi}, \tau_{x} \psi\right\rangle = \int_{0}^{\infty} \phi(y) \left(\tau_{x} \psi\right)(y) \frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dy
$$

$$
= (\phi * \psi)(x), \quad x \in [0, \infty).
$$

We now prove that $T \nleftrightarrow \phi \in \mathcal{H}_{\alpha,\beta}(w)'$ for every $T \in \mathcal{H}_{\alpha,\beta}(w)'$ and $\phi \in \mathcal{H}_{\alpha,\beta}(w)$.

Proposition 3.2: Let $T \in \mathcal{H}_{\alpha,\beta}(w)$ and $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. Then $T \notin \phi$ is a continuous function on [0,∞). Moreover, there exist $C > 0$ and $r \in \mathbb{N}$ such that

$$
|(T \# \phi)(x)| \le C e^{rw(x)}, \qquad x \in [0, \infty).
$$

Hence, $T \# \phi$ defines an element of $\mathcal{H}_{\alpha,\beta}(w)'$.

Proof: By Proposition 2.4 (ii), $T \# \phi$ is a continuous function on [0, ∞).

Further, since $T \in \mathcal{H}_{\alpha,\beta}(w)'$, from Proposition 2.3 it implies that there exist $C > 0$ and $r \in \mathbb{N}$ such that

$$
|\langle T,\psi\rangle| \leq C \max_{0\leq n\leq r} \left\{A_{r,n}^{\alpha,\beta}(\psi), \ \ v_{r,n}^{\alpha,\beta}(\psi)\right\}, \quad \psi \in \mathcal{H}_{\alpha,\beta}(w).
$$

In particular, we have

$$
|(T \# \phi)(x)| \leq C \max_{0 \leq n \leq r} \left\{ A_{r,n}^{\alpha,\beta} \left(\tau_x \phi \right), \, v_{r,n}^{\alpha,\beta} \left(\tau_x \phi \right) \right\}, \, x \in [0, \infty).
$$

From (2.9), it is deduced that,

$$
A_{r,n}^{\alpha,\beta}(\tau_x\phi) \leq e^{rw(x)} A_{r,n}^{\alpha,\beta}(\phi), \quad x \in [0,\infty) \text{ and } n \in \mathbb{N}.
$$

Also (2.10) implies, since w satisfies the property (c) , that

$$
\begin{aligned} v_{r,n}^{\alpha,\beta}(\tau_x \phi) &\leq C \left(1 + x^{2n}\right) \sum_{j=0}^n v_{r,n}^{\alpha,\beta}(\phi) \\ &\leq C \, e^{lw(x)} \sum_{j=0}^n v_{r,j}^{\alpha,\beta}(\phi), \qquad x \in [0, \infty) \text{ and } r \in \mathbb{N}, \end{aligned}
$$

for some $l \in \mathbb{N}$.

Hence, for a certain $m \in \mathbb{N}$,

$$
|(T \# \phi)(x)| \leq C e^{mw(x)}, \qquad x \in [0, \infty).
$$

Thus proof is completed.

Now, we introduce, for every $m \in \mathbb{N}$, the space $\mathcal{A}_m(w)$ constituted by all those functions f defined on $(0, \infty)$ such that

$$
\sup_{x \in (0,\infty)} e^{-mw(x)} |f(x)| < \infty.
$$

A careful reading of the proof of Proposition 3.2 allows us to deduce that if $\tau \in$ $\mathcal{H}_{\alpha,\beta}(w)'$, there exists $r \in \mathbb{N}$ such that $T \neq \phi \in \mathcal{A}_r(w)$ for every $\phi \in \mathcal{H}_{\alpha,\beta}(w)$.

Now we establish an associative property for the distributional convolution.

Proposition 3.3: Let $\tau \in \mathcal{H}_{\alpha,\beta}(w)'$, and ϕ , $\psi \in \mathcal{H}_{\alpha,\beta}(w)$. Then

$$
(T \# \phi) \# \psi = T \# (\phi \# \psi).
$$
\n
$$
(3.5)
$$

Proof: Following Proposition 3.2, $T \# \phi$ defines an element of $\mathcal{H}_{\alpha,\beta}(w)'$ and we have

$$
\left((T \# \phi) \# \psi\right)(x) = \int_{0}^{\infty} (T \# \phi) (y) (\tau_x w) (y) \frac{y^{4\alpha}}{2^{\alpha - \beta} \Gamma(3\alpha + \beta)} dy
$$

$$
= \int_{0}^{\infty} \langle T, \tau_y \phi \rangle (\tau_x \psi) (y) \frac{y^{4\alpha}}{2^{\alpha - \beta} \Gamma(3\alpha + \beta)} dy, x \in (0, \infty).
$$

Equality (3.5) will be proved when we see that, for every $x \in (0, \infty)$,

$$
\int_{0}^{\infty} \langle T, \tau_{y} \phi \rangle (\tau_{x} \psi) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy
$$

= $\langle T(z), \int_{0}^{\infty} (\tau_{x} \phi) (z) (\tau_{x} \psi) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy \rangle.$

We have (3.6)

$$
\int_{0}^{\infty} (\tau_{y} \phi) (z) (\tau_{y} \psi) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy
$$

=
$$
\int_{0}^{\infty} (\tau_{z} \phi) (y) (\tau_{x} \psi) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy
$$

=
$$
(\tau_{x} \phi \# \psi) (x) = \tau_{x} (\phi \# \psi) (z), \qquad x, z, \in [0, \infty).
$$

Our objective is to prove (3.6). We will use a procedure similar to the one employed in the proof of Proposition 3.1.

Let $x \in [0, \infty)$. By virtue of Proposition 3.2, it follows that

$$
\lim_{b \to \infty} \int_b^{\infty} \langle T, \tau_y \phi \rangle (\tau_x \psi) (y) \frac{y^{4\alpha}}{2^{\alpha - \beta} \Gamma(3\alpha + \beta)} dy = 0.
$$
 (3.7)

Assume that $m, n \in \mathbb{N}$. According to (2.9), we can write

$$
A_{m,n}^{\alpha,\beta}\left(\int\limits_{0}^{\infty}(\tau_{x}\phi)\left(y\right)(\tau_{x}\psi)\left(y\right)\frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)}\,dy\right)
$$

$$
\leq \int\limits_{0}^{\infty}e^{mw(y)}\left|\left(\tau_{x}\psi\right)\left(y\right)\right|\frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)}\,dy\,A_{a_{n,n}}^{\alpha,\beta}\left(\phi\right),\quad b>0.
$$

Thus from Proposition 2.4 (i), it is inferred that

$$
\lim_{b\to\infty} A_{m,n}^{\alpha,\beta}\left(\int\limits_b^\infty (\tau_x\phi)\,(y)\,(\tau_x\psi)(y)\,\frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)}\,dy\right)=0.
$$

On the other hand, for every $b > 0$,

$$
\left(\frac{1}{t} D\right)^n h_{\alpha,\beta} \left(\int_b^{\infty} (\tau_z \phi)(y) (\tau_x \psi) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy\right) (t)
$$

=
$$
\sum_{j=0}^n (-1)^j {n \choose j} \int_b^{\infty} (\tau_x \phi)(y) y^{2j} (yt)^{-\alpha+\beta-j} J_{\alpha-\beta+j}(yt) y^{4\alpha} dy
$$

$$
\times \left(\frac{1}{t} D\right)^{n-j} h_{\alpha,\beta} (\phi) (t), \qquad t \in (0, \infty).
$$

Thus, by Proposition 2.4(i) and taking into account the boundedness of the function $z^{-\alpha+\beta}$ $J_{\alpha-\beta}(z)$ on $(0, \infty)$, we have

$$
v_{m,n}^{\alpha,\beta} \left(\int\limits_b^{\infty} (\tau_z \phi) (y) (\tau_x \psi)(y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy \right)
$$

$$
\leq C \sum_{j=0}^n v_{m,n-j}^{\alpha,\beta} (\phi) \int\limits_b^{\infty} |(\tau_x \psi) (y)| y^{2j+4\alpha} dy \to 0, \quad \text{as } b \to \infty.
$$

Therefore, we see that

$$
\int_{b}^{\infty} (\tau_z \phi) (y) (\tau_x \psi) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy \to 0, \text{ as } b \to \infty,
$$
 (3.8)

in the sense of convergence in $\mathcal{H}_{\alpha,\beta}(w)$.

Let $b > 0$. By using, as in the proof of proposition 3.1, Riemann sums, we can prove that

$$
\int_0^b \langle T, \tau_y \phi \rangle (\tau_x \psi) (y) y^{4\alpha} dy = \langle T(z), \int_0^b \langle \tau_y \phi \rangle (z) (\tau_x \psi) (y) y^{4\alpha} dy \rangle. \quad (3.9)
$$

Thus by combining (3.7) , (3.8) and (3.9) , we deduce (3.6) and therefore proof of (3.5) is completed.

As a special case, we have following corollary.

Corollary 3.4: Let $T \in \mathcal{H}_{\alpha,\beta}(w)'$ and ϕ , $\psi \in h_{\alpha,\beta}(w)$. Then

$$
\langle T \# \phi, \psi \rangle = \langle T, \phi \# \psi \rangle. \tag{3.10}
$$

Proof: To see (3.10), it is sufficient to take $x = 0$ in (3.5).

Remark 3: Note that the property in Corollary 3.4 is equivalent to the one in Proposition 3.3. Indeed, let $T \in \mathcal{H}_{\alpha,\beta}(w)'$ and $\phi, \psi \in \mathcal{H}_{\alpha,\beta}(w)$.

If $x \in [0, \infty)$, $\tau_x \psi \in \mathcal{H}_{\alpha, \beta}(w)$ (Proposition 2.4 (i)). Then from Corollary 3.4 we deduce

$$
(T \# \phi) \# \psi) (x) = \langle T, \phi \# (\tau_x \psi) \rangle
$$

= $\langle T, \tau_x (\phi \# \psi) \rangle$
= $(T \# (\phi \# \psi)) (x), \qquad x \in [0, \infty).$

Thus Proposition 3.3 is established.

Now we obtain a distributional version of the interchange formula.

Proposition 3.5: Let $T \in \mathcal{H}_{\alpha,\beta}(w)'$ and $\phi \in \mathcal{H}_{\alpha,\beta}(w)$. Then

$$
h'_{\alpha,\beta}(T\#\phi) = h'_{\alpha,\beta}(T) h_{\alpha,\beta}(\phi).
$$

Proof : Assume that $\psi \in \mathcal{H}_{\alpha,\beta}(w)$. According to Corollary 3.4, we can write

$$
\langle h'_{\alpha,\beta} (T \# \phi), \psi \rangle = \langle T \# \phi, h_{\alpha,\beta} (\psi) \rangle = \langle T, \phi \# h_{\alpha,\beta} (\psi) \rangle
$$

= $\langle T, \quad h_{\alpha,\beta} (h_{\alpha,\beta} (\phi) \psi) \rangle = \langle h'_{\alpha,\beta} (T) h_{\alpha,\beta} (\phi), \psi \rangle.$

Thus proof is completed.

Another consequence of Corollary 3.4 is the following.

Proposition 3.6: The space

$$
\mathcal{A}(w) = \bigcup_{m \in \mathbb{N}} \mathcal{A}_m(w)
$$

is a weak * dense subspace of $\mathcal{H}_{\alpha,\beta}(w)'$.

Proof: It is sufficient to take into account the remark after Proposition 3.2 and to use Proposition 2.7 and Corollary 3.4.

We now introduce the space $\mathcal{F}_{\alpha,\beta}(w)$ that consists of all those $T \in B_{\alpha,\beta}(w)'$ for which there exists a function G_T belonging to \mathcal{A}_m (w) for some $m \in \mathbb{N}$ such that

$$
\langle T, \phi \rangle = \int_0^\infty G_T(y) h_{\alpha, \beta}(\phi) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy, \phi \in B_{\alpha, \beta}(w). \tag{3.11}
$$

 Note that the right hand side of (3.11) defines a continuous functional on $\mathcal{H}_{\alpha,\beta}(w)$. Hence T can be extended to $\mathcal{H}_{\alpha,\beta}(w)$ as an element of $\mathcal{H}_{\alpha,\beta}(w)'$. We denote by T that extension to $\mathcal{H}_{\alpha,\beta}(w)$. Moreover, for every $\phi \in \mathcal{H}_{\alpha\beta}(w)$, it has

$$
\langle h'_{\alpha,\beta} T, \phi \rangle = \langle T, h_{\alpha,\beta} (\phi) \rangle
$$

=
$$
\int_{0}^{\infty} G_T(y) h_{\alpha,\beta} \left(h_{\alpha,\beta}(\phi) \right) (y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy
$$

$$
= \int\limits_{0}^{\infty} G_T(y) \phi(y) \frac{y^{4\alpha}}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} dy.
$$

Hence $h'_{\alpha,\beta}$ T coincides with the functional generated by G_T on $\mathcal{H}_{\alpha,\beta}(w)'$. We can also prove that if $T \in \mathcal{F}_{\alpha,\beta}(w)$ and $\phi \in \mathcal{H}_{\alpha,\beta}(w)$, then $T \neq \phi$ and $T \cdot \phi$ are in $\mathcal{F}_{\alpha,\beta}$ (w).

References

- [1] G. Altenberg Bessel transformationen, in Raumen von Grundfunktionenuber dem Interval $\Omega = (0, \infty)$ un derem Dual raumen, Math. Nachr. 108 (1982), 197-218
- [2] M. Belhadj and J.J. Betancor, Beurling distributions and Hankel transforms, Math. Nachr. **233-234** (2002), 19-45
- [3] J.J. Betancor and I. Marrero, The Hankel convolution and the Zemanian spaces, B_{μ} and B'_{μ} , Math. Nachr. 160 (1993), 277-298.
- [4] J.J. Betancor and I. Marrero, structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math Japonica 38(1993), 1141- 1155.
- [5] A. Beurling, Quasi-analyticity and general distributions, Lectures 4 and 5, Amer. Math. Soc. Summer Institute, Stanford, CA, 1961.
- [6] G. Bjorck, Linear partial differential operators and generalized distributions, Ark, Math. 6 (1966), 351-407.
- [7] F.M. Cholewinski, A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. 58, 1965.
- [8] A.Erdelyi, Tables of integral transforms, II, McGraw-Hill, New York, 1953.
- [9] O. von Grudzinski, Temperierte Beurling-Distributionen, Math. Nachr. 91 (1979), 297- 320.
- [10] D.T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116(1965), 330-375.
- [11] I.I. Hirschman Jr. Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/61), 307-336.
- [12] I. Marrero and J.J. Betancor, Hankel convolution of generalized functions, Rend. Mat. 15 (1995), 351-380.
- [13] J. de Sousa-Pinto, A generalized Hankel convolution, SIAM J. Math. Anal. 16 (1985), 1335-1346.
- [14] K. Stempak, La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R. Acad. Sci. Paris Ser. 1 Math. 303 (1986), 15-19.
- [15] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1959.
- [16] B.B.Waphare, and S.B. Gunjal, Hankel type transformation and convolution on spaces of distribution with exponential growth, International Journal of Mathematical Archieve. (IJMA)- 2(1), Jan 2011, 311-144.
- [17] B.B. Waphare, Hankel type convolution equations in distribution spaces, International Journal of Engineering, Science and Mathematics Vol. 3, Issue 2 (2013),47-67
- [18] A.H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
- [19] A.H. Zemanian, The Hankel transformation of certain distribution of rapid growth, SIAM J. Appl. Math. 14 (1966), 678-690.
- [20] A.H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968.