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Abstract

In this paper we develop the distributional theory of Hankel type transformation. New
Frechet function type spaces H, g (w) are introduced. The functions in }, s (w) have a
growth ininfinity restricted by the Beurling type function w. We study on H,, s (w) and
its dual the Hankel type transformation and the Hankel type convolution.
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I ntroduction

The theory of Hankel transform have been studied by many researchers in past from time
to time.

The Hankel type transformation is defined by

o]

hep (@) (0) = f )" @B (y) b () y* dy, x € (0,00),

0

where J,_p represents the Bessel type function of the first kind and order a — f.
Throughout this paper, we will assume that (a — ) > —%. Notice that if ¢ is a

L ebesgue measurable function on (0, ) and

[oe)

fx‘*“ 1§ (x)] dx < o,

0

then, since the function z=@=A)J,_; (2) is bounded on (0,), the Hankel type

transform h, g (¢) is a bounded function on (0, ) . Moreover, h, g (¢) is continuous
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on (0, ) and according to the Riemann-Lebesgue theorem for Hankel type transform
([13]),

lim he () () = 0.
The study of Hankel transformation in distribution spaces was studied by Zemanian
([18].[19]). More recently Waphare and Gunja [16] have investigated the h,p —
transform of generalized functions with exponential growth. Our objective in this paper is
to define the Hankel type transformation on new distribution spaces that are in a certain
sense, between the spaces considered in [16] and [18].
Following Zemanian [18], we can introduce the space #{, g that consists of all those
complex valued and smooth functions ¢ defined on (0, ) such that, for every m,n €
N,

pmn(cp) = Supxe(o 00)(1 +x2)m |(_ )" (xZB—l ¢(X))| < oo

On H, ; we consider the topology generated by the family {pm n} of seminorms.

mmneN

Then 7, 5 is a Frechet space and the Hankel type transformation H, ; defined by

[ee)

Hep (@) (0) = f )P JupGy) 6O dy,  x € (0,00),

0

is an automorphism of #{, s (see [18, Lemma 8]). Note that the two forms h, s and H, g
of Hankel type transforms are related through
Hop (@) (x) = x*® hop(y*# 1 ¢) (x), x€ (0,).

The Hankel type transformation H,p is defined on the dua ¥,z of H,p by
transposition. Altenburg [1] developed atheory similar to that of Zemanian for the b, —
transformation. Note that the space 7{_, /, coincides with the space H' considered in [1].

In Waphare and Gunjal [16], the space M,, ; constituted by all the complex valued
and smooth functions ¢ defined on (0, o0) satisfying

(o) (o6 )

Moin () = Sup _e™

x € (0,00)

foreachm,n € N isconsidered.
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In Waphare and Gunjal [16, Theorem 2.4] a characterization of the image by H, z of the
space x, p as acertain space of entire functions with a restricted growth on horizontal
strips is given. The Hankel type transform H, s is defined on the corresponding dual
spaces by transposition. We introduce here the space H,, s (w) constituted by functions

whose growth is restricted by e™, n € N, where w is a function that we will define
later.

Hirschman [11], Haimo [10] and Cholewinski [7] investigated the Hankel
convolution operation.

The convolution associated with the h, s —transformation is defined as follows.
The Hankel type convolution f#,s g of order a —p of the measurable functions
f and g isgiven through
4a

4 d
2¢-BT(3a + B) "

(fHapg) x) = f FO) (apteg) @)

where the Hankel type translation operator , 57, g, x € (0,), of g isdefined by

[oe)

(apTx9) ) = f 9(2) Do g (x,y,2)

0

Z40!

dz,
20-FTBa+p)

provided that the above integrals exists. Here D, 4 is the following function

Dep (1,9,2) = (22T G+ B)) f (et) @) Ju_g (ct) (YOI F o (yE)
0

x (zt)~@=F) Ja—p (2t) t** dt, x,y,z € (0,00).
Moreover, we define , s7, g = g.
The study of the #, — convolution on L,, — spaces was developed in [10] and [11].
If we denote by L, , s the space of complex valued and measurable functions £ on (0, o)
such that
fooolf(x)l x4 dx < oo,
the following interchange formula
hap (f#apg) = hap (f) hap (9),
holdsfor every f,g € Lygqp-
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The investigation of the distributional Hankel convolution was started by de Sousa-Pinto
[13], who considered any u = 0. Betancor and Marrero ([3], [4] and [12]) studied the
Hankel convolution on the Zemanian spaces. In [16], Waphare and Gunja analyzed the
#4,5 — convolution of distributions with exponentia growth.

In the sequel, since we think any confusion is possible, to simplify we will write #, t,.,
x € [0,00) and D instead of #, g, 4 g7, x € [0,0) and D, p respectively.

Asin [6], we consider continuous, increasing and non-negative functions w defined on
[0, ) such that w(0) = 0,w(1) > 0, and it satisfies the following three properties
Hwlx+y) <wx)+w(), x,y €[0,00),

(i) /" w () /x?) dx < oo, and

(iii) thereexista € R andb > 0 suchthat w(x) = a+ blog (1+ x), x € [0,0).
Wesay w € M when w satisfies the above conditions. If w is extended to R as an even
function, then w satisfies the subadditivity property (i) for every x,y € R..

Beurling [5] developed a general theory of distributions that extends the Schwartz
theory. Some aspects of that theory were presented and completed by Bjorck [6]. Now we
recall some definitions and properties from [2] which will be useful in the sequel.

Let w € M. For every a > 0 the space B,z (w)is constituted by all those
complex-valued and smooth functions ¢ on (0, ) such that ¢(x) =0, x = a, ¢ and
hop (§) € Lyg4p andthat

57 @) = [ Ihap @] @ x* dx < o
0

for every n € N. By (w)is a Frechet space when we consider on it the topology
generated by the system {5ﬁ'ﬁ} . of seminorms. It is clear that Bz (w) is
ne

continuously contained in Bgﬁ (w) when 0<a<b. The union space

Bap ) = | JBLs )

a>0

is endowed with the inductive topology.
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For every x € (0,»), the Hankel type trandation 7, defines a continuous linear
mapping from B, g (w) into itself. Then we can define the Hankel type convolution
T#¢of T € Byp(w)',thedua spaceof B,z (w)and ¢ € B,z (W) by

(T#P) () = (T, ¢p),  x € [0,00).
By €,5 (w)we denote the space of pointwise multipliers of B,z (W) .Eqp (W) is
endowed with the topology induced by the topology of pointwise convergence of the

space T (Ba,ﬁ (w)) of continuous linear mapping from B, s (w) into itself. The space

€ p (W) dual of €, 5 (W) is characterized as the subspace of B, ; (w)" defining Hankel
type convolution operators on B, g (w).
Throughout this paper we always denote by C a suitable positive constant that can

change from one line to another one.

The space H , g (W)
In the sequel w is afunction in M. We now introduce the function spaces H, 5 (w). A
function ¢ € Ly, p isin H,z (w) when ¢ and h, s (¢) are smooth functions and, for

everym,n € N,

Umn (¢) = Sup emw(x) < oo,

x € (0,00)

o) sco

and

il @ = Sup em® |(2D)" hep (9) (0| < .

x € (0,00)
On #, z (w) we consider the topology generated by the family

a,f
Um,n» Vmn
mneN

of semi-norms.
In the following we establish some properties of H, z (w) that can be proved by
invoking well-known properties of the Hankel type transformation h,;z and the

conditions imposed on the function w.
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Proposition 2.1 : (i) The space H, (w) is a Frechet space and it is continuously
contained in H_,,, . Moreover if w(x) =log(1+x), x € [0,00), then H, 5 (W) =
H_4/, , where the equality is algebraical and topological.

(ii) The Hankel type transformation h,, g is an automorphism of #, ;z (w),

(i) The Bessel type operator A, p= x*#~2 D x** D defines a continuous linear mapping
from 3, z (w) into itself.

(iv) If P isapolynomial, then the mapping ¢ — P(x?) ¢ is linear and continuous from
Heqp (W) intoitsalf.

We now introduce a new family of seminorms on H,z (w) that is equivalent to

{um,n, v,‘f;,ﬁ}m e and that will be very useful in the sequel.

Proposition 2.2: For every m,n € N, wedefine

AZE (@)= Sup )emw(x) A2, |, ¢ € Hap W),

x € (0,00

and

Bel (p) = Sup ™AL jhup () ()|, ¢ € Hop (),

x € (0,00)

where A, 5 represents the Bessel type operator x*#~2 D x*@ D.

of semi-norms generates the topology of #, z (w) .

m,n

Thefamily {475, Boh)

Proof: Proposition 2.1 (ii) and (iii) imply that the topology defined on #, z (w) by

{um,n, v,‘flfl} is stronger than the one induced on it by {Af‘n’; , B,‘flfl} :
mmneN mmneN

Now we will see that {Af‘,f; B,‘fl’,ﬁ} generates on H, 5 (w) atopology finer

mneN

than the one defined on it by {um,n, v,f{,ﬁ

}m,ne N '

Foreveryk € Nand¢ € H,z (w), we havethat

k
1 —2(a—B)—
(; D) ¢ (x) = x~2(@=pB)-2k f:xk foxkxk_l f:z x{* AY g (1) dxy ..dxy, x €

(0, ), (2.1)
and
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k
(3p) ¢ 0=
(—1)kx—2(@=p)-2k fxoo Xk fxo: Xjq oee- f;: xF% AL 5 ¢ (1) dxy ..dxy, x € (0,00).(2.2)
To prove (2.1) and (2.2), we must proceed inductively. We will show that (2.1). To see
(2.2), we can argue in asimilar way.
Formula (2.1) holds when k = 1. Infact, according to Proposition 2.1 (i) and by
[1, Lemma8 b, it has, for every ¢ € H,z (W)

hsas ((2D)9) = ~hap @). 23)
Moreover, by partia integration and by [20(7), Chapter 5], since the function
z%*F ] ,_g (2) isbounded on (0, «), it has, for every y € (0,0) and¢ € H,z (W),

hagp (X772 [7xi Do ¢ (x1) doxy) () (24)

0o X

d

= 7 [ (G oy ) [ X0 B b () vy
0 0

=y % hep (Bap ®) ()
= —hgp (@) ().
From (2.3) and (2.4) we deduce that (2.1) istruefor every ¢ € H, p (W) whenk = 1.
We now supposethat I € N and that, for every ¢ € H, 5 (W),

we have
! 1
(% D) ¢ (x) = x72@ B2 [Ty oy [P AL g ¢ () d e dixy,
x € (0,00). (2.5)

We have to see that (2.5) holds when lisreplaced by [ + 1 for every ¢ € H, 5 (w). Let

¢ € Hyp (w). According to [1, Lemma 8], we can write

1 +1 I+1
3D) o= (D™ hoprie (hap ®) .
On the other hand, it is easy to see that the induction hypothesis (2.5) it deduces that,
sinceA,; ¢ € Hyp (W), Proposition 2.1,

Xl+1

X
x—2(@=p)-2(1+1) jxlﬂ j x; f e Al“ ¢ (x1) dxq ....dx;4q
0 0
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1

l
= Aapi (2 D) Bapd) (0, x € 0,00 26)
where A, denotes the operator defined by
(Agp ) (x) = x~0072F f;c t2@Prly (0) dt, x € (0,), foreveryyp € Hyp (w).

Moreover, from (2.3), it follows that

1

1 l l
(; D) Dap ® = Dapy (; D) . 2.7)
On the other hand, by partial integration and by [1, Lemma 8b] we obtain that, for every
Y € H_ ),
ha,/.?,l+1 (Aa,B,l Aa,/.?,l 17[)) (Y)

[oe)

X
d
= —y~? f Tx ((x}’)_“+ﬁ_l]a—ﬁ+z(x}’)) ftz(a_ﬁ)ulHAa,ﬁ,l Y (t) dtdx
0

0
= —hep, W) ), y € (0,0).
Hence

Mapibapi 0= (3D) W, ¥ € H_y. (28)
From (2.6), (2.7) and (2.8), according to proposition 2.1 (i), it implies that

(l D)1+1 () =

X

— — — X X X
x~2(a=p)-20+1) Jo xen S [ X Mg @ (x1) dxy .....dXpyq, x € (0,00).

Thus (2.1) is proved.
Now letm,n € N.Assumethat ¢ € H,p (w). From (2.1) it follows that

o (25 g

e

x Xn X2
<C Sup |ALg @ (2)|x2@-F)m2n fxn f Xp_1 f x1% dxy .....dx,
Z € (0,0) ’
0 0 0
<C Sup |Mhzo (|, x €O
Z € (0,0) ’

Also, by using (2.2), since w isincreasing and it satisfies the (iii) property, we obtain for

[ € N large enough,
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e mw(x)

(o) wo

< v [ [, f X D (a7 ) ()|
X

Xn
X dxq ....dx,

<C Sup eMmtivw® |A” (@) x=>1.
z € (0,0)

Hence, it concludesthat, for acertainl € N,

U ($) < C AL, ($).
According to Proposition 2.1 (ii) h,p (¢) is aso in H, g (w) and then the following
inequality also holds

“hP) <C BmHn(d))
Thus we prove that the topology generated by { ﬁf; ,B“ﬂ } L on Hop (W) is finer
mne

than the one induced on it by {um,n , v,‘fl'fl} Nand thus the proof is completed.
mne

Through the proof of Proposition 2.2 we aso show the following
characterizations of the space H, s (W).
Proposition 2.3: A function¢ € H, 5 (w) if andonly if ¢ € H_,;,, and ¢ satisfiesone
of the following three conditions:
(i) Forevery m,n € N, Afn[; (¢p) < coand B,‘fl"ﬁ () < oo,
(ii) Forevery m,n € N, Aﬁf; (¢p) < o0 and v,‘fl’fl (¢p) < oo,
(iii) Foreverym,n € N, u,, (¢) < o and B,‘flﬁ () < oo.

Moreover, the families of seminorms {A;"n‘;,B“B } N,{A;",ﬁl,v,‘fl’,ﬁ} . and
mne mne

{um,n ) B,f;,ﬁ}m . Jenerates the topology of 3, z (w).

We now analyze the behavior of Hankel type translation operator on H, g (w).
Proposition 2.4: (i) Let x € (0, ). The Hankel type translation operator 7, defines a
continuous linear mapping from 7, z (w) into itself.

(i) Let ¢ € Hyp (w). The (nonlinear) mapping Fy defined by Fy (x) = 1,9, x €

(0, o0) is continuous from [0, ) into H, g (w).
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Proof: (i) Let ¢ € Hyp(w)and m,n € N. Since Ayp7, = 1, 0,5 ¢ ([12
Proposition 2.1]) and since w isincreasing and it satisfies the property (i), we can write
e™ ) |AG 5 (2 ) )]

< ™01, (|a0s 8]) O)

x+y
< em (W -w(lx-yD) j D(x,y,z) e™ @) |AL 5 ¢ (2)]

lx=y|

Z4(X

d
20-FT Ba + B) *°

Z4zx

dz,
20-BTBa+p)

< ™ Sup ™ |An ¢ (2)] f D (xy,2)
0

z € (0,0)

foreachy € (0, ).
Hence by [11, (2)], it concludes

Al (e 9) < e™@ ATE (). (29)
On the other hand, by [3,(3.1)] and [20, (7), Chapter 5], since the function
z7@B)J,_p ) isbounded on (0, ), it follows

m

52) s @) 0)

emw®)

= emw(®)

(% D)" (za—ﬁ IF'Ga + ﬁ)(xy)—(a—ﬁ) Ja—p (xy) he g (gb)(y))‘

n
<C Z em™v()
j=0

n-j

(50) @)

x%, y € (0,0).

Then

e (e ) < C (A +2%) Ty veh (¢) (2.10)
From (2.9) and (2.10) we deduce that 7, is continuous from 3, z (w) into itself.
(ii) Let ¢ € Hyp (w). Assume that x, € (0,0) and m,n € N. We can write for
every x € [(x0/2), (3xy/2)]andy = 2x,,
™0 [A% o (1,9 — (72,0) ) )]
< oM WOI-wr-Gro/2)-w0) gy HWE AR | (7))

z € (0,00)
y+(B38x0/2) Z4a
X j ID(x,y,z) — D (x0,V,2)| =— dz
y—(3x0/2) 2¢ ﬁr(?)(l + ﬁ)
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S 2 e(m+1)W(3Xo/2)—W(y) Sup e(m+1)W(Z) |AZ’B ¢(Z)| .

z € (0,0)
Hence, if € > 0, then there exists y; > 2x, such that, for every x € [(x0/2),(3x0/2)]
and y = Vi,

e [a2 o ((2x9) = (12,8)) )| < €.

On the other hand, since w isincreasing on [0,%0), it has

Sup ™ [an 5 () = (2, 8)) O]

ye(0, y1)

< emWO) , Eggggyl) |A3ﬁ ((rx¢) - (rxo¢)) (y)|.

Therefore, according to [12, p.359], since A, 5 is acontinuous operator from H_, /, into

itself, we deducethat if e > 0, then

69) —
3 e g (60~ ) 0] < <

provided that x € (0,) and |x — x,| < &, for some§ > 0.
Thus we conclude that, for every € > 0, there exists§ > 0 for which
Ag‘lfﬂ. (Tx¢ - Tx0¢) <€ )
whenx € (0,0) and |x — x,| < &.
Moreover, the Leibniz rule and again [3,(3.1)] and [20(7), Chapter 5] lead to
1 d\"
<; E) (ha,ﬁ (Tx9) — Tx0¢ (}’))
n .
1 d\"’
_ pa-p ™Moy (2 L
25 FT(3a + ) 2 () (5) tae@)
]:
x (2 Goy) @B Jopy (ey) = x5 (6o) P Japry (x0¥)), %y € (0,%0).

Hence, the boundedness of the function z=@"A)J,_; (2), z € (0,), implies that if

€>0,
1 d\"
mw(y) |[Z —
<Ce™O ¥ (x¥ + x) Ug{i,n—j (¢) <e,

foreachx € (0, 2x,) andy > y;, wherey, isalarge enough positive number.
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On the other hand, since the function f; (x,y) = 2% (xy)™**F~J J,_p,; (xy),
x,y € [0,00),is continuous (and hence uniformly continuous in each compact subset of
[0,0) X [0,00)), for every j €N, if € > 0 we can find § > 0 such that |f]- (x,y) —

fi (x0,¥)| < €,foreveryy € [0,y,], x € [0,), [x —x¢| <Sandj =0,.....,n. Then

n

<Ce zufﬁfj @),

J=0

1.d\"

(G3) (hapted =109 )

Sup e™ O
y dy

y€(0,y1)

forevery x € (0,0) and |x — x| < 6.

Thus, it is concluded that for every € > 0, there exists § > 0 such that
uph (120 — 74,8) < €,

provided that x € (0,) and |x — x,| < 6.

Hence F is a continuous function on x,.

Toseethat Fy iscontinuousinx = 0, we can proceed in asimilar way.

Thus proof is completed.
Next, we study the pointwise multiplication and the Hankel type convolution on
Hea g (W).
Proposition 2.5: The bilinear mappings defined by
(@.¥) > ¢y

and

69) > p#Y
are continuous from H, s (W) X Hy g (W) into Hy z (W) .
Proof: By virtue of the interchange formula[12, Theorem 2d]
hop (@#Y) = hop (@) hop V), G Y € Hyp (W),
the continuity of the pointwise multiplication mapping is equivaent to the one of the
Hankel type convolution mapping.
Letm,n € N. Assumethat ¢,y € H, z (w), we can write, from the Leibniz rule, that

i () < C )t (@) g ().
=0

On the other hand, since A, 3 (p#Y) = (A, p ¢) # [14, Proposition 2.2] and since w
isincreasing on [0,00) and it satisfies the property (i) of Section 1, it has
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™) A - e (1) ()|
= e |((82 hag @) # by @) G0

< W) f 1A% 5 (hepb) ()] e~ 0x=3D
0

x+y

(@) Z4a y4a
i |x-fy| Peon D s W O™ 35 tGat p) @ 7 Gar )
o) x+y
< [ 1855 (hep ) D] ™ [ D03, 2) e ] ™
0 lx=y|
Z4a y4a

X dz . dy,x € (0,00).
2P Gat B) 2 2 PrGa v ) P F €0

Hence, since w verifies the property (i) of Section 1 and by taking into account [11], we
can conclude
B,fl'fl (py) <C B,flfln (¢) B;;ﬁ (), forsomel € N.
By virtue of Proposition 2.3, we have proved that the pointwise multiplication defines a
continuous mapping from
HapW) X Ho g(w) into Hy g(w).
Thus the proof is compl eted.
Remark 1. The last proposition shows that each function in H,z (w) defines a
multiplier in #, g (w). Also, in the proof of Proposition 2.4, it was established that for
every x € (0, ) thefunction f, defined by
L) = ) @ P, s (xy), y € (0,0),
isamultiplier of H, 5 (w).

In [2] we introduced the space B, s (w) (see Section 1 for definitions). B, g (W)
can be considered as a Beurling type function space for the Hankel h, g transformation.
In the following we establish that B, z (w) is dense subset of H, 5 (w).

Proposition 2.6: The space B,z (w) is continuously contained in H, s (w). Moreover,

B, p (W) isadense subspace of H, 5 (w).
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Proof: Let ¢ € Bgp (W), where a > 0. Since ¢ and hq g (¢) € Lqp, , according to
[11, Corollary 2], it has

¢ (0 = f )P J_y 9) hag (6) O) y*<dy,  x € (0,00).
0

Hence by invoking [20 (7), Chapter 5], since z‘(“‘ﬁ)]a_ﬁ (z) is a bounded function on
(0,0) and w satisfies the property (iii) of Section 1 for every m,n € N, we can find
[ € N forwhich

U ($) < C Subccom €™ [}y |hep )W|dy <C 577 (). (21D
Here C is apositive constant that is not dependent on ¢.
By virtue of the Paley-Wiener type theorem for the Hankel type transform on Bg‘ﬁ (w)
([2, Proposition 2.6]), h, g (¢) is an even entire function and for every m € N, there
exists C,,, > 0 for which

|hap (@) (x + iy)| < Cp e ™Iy y € R (2.12)

According to the well-known Cauchy integral formula, we can write

& (@) () =
where C, represents the circled path having bi-parametric representation z = x + e'? ,
6 € [0, 2m).
Letm,n € N.From (2.12) and (2.13), it follows, since w satisfies the property (i), that

21

AL hap @G
C

x (Z—X)H'1

dz, leNand x € R, (2.13)

2mi

n

% ha,ﬁ (¢) (x)| <C f e—mw(x+cos 9)+(a+1)|sin9|d9 <C e—mw(x) x> 1.

0

Thus, it follows

G2) hes @) 0

< (e mw) x > 1.

Moreover, by using again the above-mentioned properties of the Bessel type functions,

we have

CLY hp@ @

x dx

<cC f Y2 ()| dy < C g (6), x € (0,1).
0

Thus we conclude that vees (¢) < co.
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We have proved that B, 5 (W) © Hy g (w).

To seethat By 5 (w) is continuously contained in 3, g (w) we will use the closed graph
theorem. Assume that {¢,},, ¢ y IS @ Sequence in B ap (W) suchthat ¢, - ¢ asv - oo,
in By wW)and ¢, > P asv > oo, in Hyp (w). It is clear that ¢, (x) > P(x) as
v — oo forevery x € (0, ). Moreover, from (2.11) we deduce that ¢, (x) = ¢ (x) as
v — ooforeachx € (0, ). Hence ¢ = 1. Thus we show that B ap W) C Hyp(w)is
continuous.

We now see that v, g(w) is a dense subset of H, z (w). According to [2, Proposition
2.18] we choose Y € B2 ap W)such that 0 < ¢ <1 and Y(x) =1,x € (0,1).
Assume that $ € Hyp (W). We define for every
le N-{0}, Y (x) =y (x/1), x €(0,0)and ¢; = Y, ¢p. Let m,n € N. The
Leibniz ruleleadsto, for every | € N — {0},

mw(x)

e <SP+ SE(x),  x €(0,0),

(o) (000 600)

where
St ) = Zl e (= p )¢><x> ‘( >n_,-¢ G|, x e
and ]

SE(x) = emw ()

(0) ¢ 0o

Standard arguments allow us now to conclude that

Umnn (01— @) =0, asl — oo,
On the other hand, by [11, Theorem 2d], sincey;(0) =1, [ € N — {0},

|1p()—1|, x € (0, 0).

we can write

ha,/.? (¢ — @) (x).
= (hap W) # A% 5 hop () () = AL o (§) (x)

[oe)

~ [ hap @0 ) (5 (82 hep @) 0) = B hap () @)

0

4a

Y d
20-FT Ba + B)

foreachx € (0,0)and!l € N — {0}.
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Fix | € N—{0}.Tosmplify wedenoteby ® = Ap, 5 h, g (¢). Itisnot hard to see that

hop () () = PGB hy o ) (D), ¥y € (0,00) . Then
ap Pap (D1 — P) (x)

[oe)

4a
= f hap ) ) (rx @ (3)- cb(x)) Za_,;ry(3a+ 5 x €0

0

We now consider d € (0,1) that will be specified later. We divide the last integral into
two parts.

According to [11 (2)], sincew isan increasing function on [0, «), we have that

x+y/l
y
[ s [ D(x3.2) (0@
x+1d lx—y/1|
Z4a y4zx
- o d d
() 20-FTBa+ B) 2 2eFTBa + ) =
Sup 4a
<0,y P@1 [ hes ) 0]y dy
x+14
_ Sup Sup
(m+k)w(y) .,4a (m+k)w (2)
<C e y dyZ € (0,00) ICD(Z)I 7 € (0, oo) |ha,ﬁ (lp) (Z)| e
x+14
Su Su
< Cemm® [ mytdy. S 10, & (G e ) D],

foreveryx € (0,0)andk € N.
Hence, since w satisfies the property (i) of Section 1, by choosing k € N large

enough it follows that

© x+y/l
sup [ [ hop D) | D@ y/L2) (0@ - 06)
e x+14 lx=y /1l
y 4 ; y4a 4
20-FTBa+B) *~ 20-FT(3a) ©~
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<C flf e WO 4% dy Sup, ¢ 0,0y | P(2)| SUD, € (0,.00) | ha g (W) (2)| eMHOW @ -,
asl - o

On the other hand, by again using [11, (2)], one obtains, for every x € (0, o),

x+14 x+y/l

e f hep @) () f D(x,y/L,2) (9(2) — D))
0

lx=y/l|

4a

z y
X d d
20FTBa+ B) 2 2¢FT Ba+ )

4a

<C Sup |hap ()(2)] MW@ (x 4 [d)6a+2f Sup
z € (0,00) lx—y/lgsz<sx+y/1|P(2)—P(x)],
o<y<x+l14
Moreover, we have that, for eachn € (0,x + %) andx € (0, ),
x+(n/1)

E (x+%)—<l>(x)| < f |% c1>(t)| dt

X

(G ®) G+
(G ®) (49

If it is necessary above we consider the even and smooth extension of @ to R. Hence, it

1
< 7 (x + 1% Sup

—x—19< E<x+19

Also, we can write

(x + 1% Sup

—x—19< & <x+14

1
l

|<1> (x+¥)—cb(x)| <

foreachx € (0,00)andn € (—x —1%,0).

has
x+19 x+y/1
oMW () f hopg @) () f D(x,y/l,z) (CD (z) — CD(X))
0 lx—y/1
4a 4a

z y
X d d
20-FTBa+ B) ** 20-FrBa + B) =~

F ) (+3)

1
<C Sup |ha,ﬁ (l/))(Z)' emW(x)T (x + ld)10a+6ﬁ Sup
z € (0,0)

—x-19< & < x+14
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<C Sup |ha,B (¢)(Z)| emw(x)_kw(x_(%)‘ld_l) %(x + [4)10a+6F
z € (0,0)

l i d(2) ekw(2),

X Sup i

z € (0,00)

providedthat x > 2, k,I € N andl > 2. Notethatif x,1 >2, x > (I¢/(l - 1)).
Then

x+14 x+y/l
e f hep @) () j D (x, y/L2) (& (2) — (x))
0 lx=y/u|

z y
X dz. d
20-FT Ba+ B) " 20-FTBa+ B)

< C [4(10a+6p)-1 (x + 1)10a+6ﬁ' oMW (x)—kw [x—(x/D)-1971],
whenx >2,l, k € N and | = 2.

Sincew isincreasing on [0,00) and w verifies the property (i), we have that

x 1
W(X—T—ld_l) > EW(x)_w(1), x =2, Lk e Nandl =2,

hence by choosing k large enough, since w satisfies the property (i), we have
x+14 x+y/l

e f hap @) () f D (x,y/L2)((2) — d(x))

0 lx—=y/1|

4a 4a

z y
X d d
2¢-BT Ba + B) © 20-FT(3a + B) >

< C400atep)-1 - x>2 ke Nand | >2.
Assumenow that 0 < d < 1/(10a + 68). Then we conclude that
x+14 x+y/l

Sup [emwe f hep @) ) f D (x,y/L,2) (9(2) — D))
0

x=2
lx=y/1|

4a 4a

z y
x d dy| =0, asl - .
20-FTBa+ B) 2 20 FTBa+p) 2|7 BT

By proceeding in asimilar way we obtain that
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x+14 x+y/l
Sup [eme j hep @) () j D (x,y/L7) (6(2) — o)
== 0 =y /1]
Z4zx y4a

X d d
20-FTBa + B) > 2 PTBa + B) =

-0, as | - oo,

<C Sup |hep @) (2)] ! (2 + D10x+6B  syup 14 @ (2)
- z € (0,0) wp l z € (0,00) Z dZ

provided that 0 < d < 1(2%7F + 4).
Thus, we deduce that

Bif (g1~ ¢) -0, asl— o
By taking into account Proposition 2.3, the proof is now complete.
Remark 2: According to [2, Corollary 2.8], the Property (ii) (for w) is essentia to
establish the non-triviality of the space B,gp (w). Indeed the function ¢(x) =
e™*"/2,x € [0,0) isinH,z (W) . (see[8, (10)]) provided that w(x) < C x!, when x is
largefor somel < 2.

Next we establish a result concerning approximated identity in  H, z (w)
involving Hankel type convolution. This property whose proof will be omitted can be
proved following a procedure similar to the one employed to prove [3, Proposition 3.5]
and [17].

Proposition 2.7: Assumethat y € B,z (w) and that [, 9 (x) x** dx = 2%7F T (3a +
B). Thenforevery ¢ € Hyp (W), ¢ #y, = ¢, as m > oo, in H, g (W) where, for
eachm € N, ¥, (x) = m®**28 ¢ (mx), x € (0, ).

Hankel type transformation and Hankel type convolution on the space#, g (w)'

In this section we study the Hankel type transformation and the Hankel type
convolution on H, z (w)’, the dual space of H, z (w). Our results can be seen as an
extension of the ones presented in [12].

Suppose that f is ameasurable function on (0, o) such that, for somek € N,

[oe)

f e~ kw(x) |f ()] x4 dx < oo,

0
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then f definesan element Ty € H, z (w)' by
4a

X
dx,
2¢-BT Ba + B)

(T}, ) = f F() $() € Hap W).

Indeed, for every ¢ € H, 3z (w), ithas

[oe)

()| < [ e @l @Ie dx g (@)

0

In particular the space H,, s (w) can beidentified with a subspace of H, g (w)".

On the other hand, if ¢ € H,z (W) then ¢ € g, (W), the space of pointwise
multipliers of B,z (w). Indeed, let ¢ € Hyp (W) . Assume that ¥ € By 5 (w) with
a>0. Then ¢@)yYx)=0 x=a. Moreover for eey n €N,

5P () = [[7 €™ |y p (d) ()| x* dx < € 85° W) v (),
wherel € N ischosen large enough and it is not depending on ¢. Note that we also have

proved that H, s (w) is continuously contained in &, 5 (w). Hence, the dual space of

gqp W) Ofepp (W) € Hyp (W)

We define the Hankel type transformation on 7, z (w)" by transposition. That is,
if T € 3,p (W), the Hankel type transform h, z T of T is the element of 3,z (W)’
given through

(hap T, P) = (T, hep O), ® € Hyp (w).

The generalized Hankel type transformation hfw can be seen as an extension of the
Hankel type transformation h,gz. Let Y € H,p (W). Since h,p (W) € Hyp (W),
he,p () defines an element Thaﬁ ) Of Hyp (W) by

[oe)

(T hg oy, ) = f he s () () H()

0

4a

2¢-FT(3a + B)

dx, (l) € }[a,ﬁ (W)

Moreover, Parseval equality for Hankel type transformation leads to

o)

Ty @2,9) = | 0 o (D)

0
= (sz: ha,/_? (), ¢ € f]{a,ﬁ (w).

4a

dx,
20-FTBa + B)
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Thus, we have shown that Ty, ; o, = he,p (Ty) -

Now, we determine the Hankel type transform of the distributionsin &, g (w)".
Proposition 3.1: If T € ¢, 3(w)’, the Hankel type transform hy, ; T coincides with the
functional defined by the function

F(x) = 2°7PTBa + B (T, ()™ PJap(xy)),  x € (0,).
Then hg g T is a continuous function on [0, ) and there exist € > 0 and r € N for
which
|h[w (T) (x)| <Ce™W, x € (0,00).
Proof : Let T = g, 5(w)". We have to see that

(hap (1), $) =T, hap ($)) = f (T, (xy) ™ P (xy)) ¢ (x) x* dx,
0

forevery ¢ € H,p (w). (3.2)
In [2, Proposition 3.4] we proved that, for every x € (0,00), the function f;
defined by f, () = (xy)™ ¥ J,_p (xy), y € (0,) isinggp(w).
Hence, we can define the function
F(x) = (T), )™ @ P Jo_g (xy)),  x € [0,00).
Thus F is continuous function on [0,00). Indeed, let x, € [0,0). To See that F is

continuous at x, it issufficient to show that, foreveryn € Nand¢ € B,p (W),

5P (60 )@ Py (xy) = (603) ™ @ Pu_p () = 0,05 x = xp.
Assume that n € N and ¢ € B,z (w). By virtue of [3, (3.4)], it follows for every
x, z € [0, ),
hap (90D 9) ™ JoopCey) = (x) ™ @ Po_p(x0)) (2)

1
= 2¢-BT(3a + ) (Tx (ha,/.?¢)(z) - Txo(ha,ﬁ¢) (Z))

According to Proposition 2.4 (ii) and Proposition 2.6, the mapping G defined by

G (x) = 1y (ha,/.? ¢)' x € [0,0),

is continuous from [0,) into H, z (w). Moreover, since w satisfies the property (iii),

thereexists! € N such that
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5 (960 @ P p () = )@ P (x0)

1 oo
~ 24 FT(3a + ) Of " |12 (hap ) (2) = Txy(hap ¢) ()| 2* dz

< Cupio (Tx (ha,ﬁ d)) — Txy (ha,ﬁ d))) ) x € [0,00).
Hence,
527 (40D () g i) = Goy) o p o)) =0, asx > xo,
Moreover, sinceT € &, z(w)’, thereexistsC >0, r € Nand ¢, ¢ € Byp (W),
B
(T, @) < C jgﬁﬁjﬁ‘ (¢j @), @ € g,pw).

In particular, since w has the property (iii) for every x € (0, ),

o)

(T ), Gey) @B _pGey))| <C max j e™ ™) |t (hap ¢j) )| y** dy
0

<C max Uriro (Tx (hap ¢j)),
forsomel € N. Thenby (2.9), it follows that

(T, )@ Juep Gy))| < €M) max vl (9)), x € [0). (32)
From (3.2), we infer that the integral in (3.1) is absolutely convergent for every ¢ €
Hep (W).
Assumethat ¢ € H,p (W), Itisclear that

Him (10D, ) Jo Gy $) 4 dx = 0,
b

Let b > 0. we can write

f TOY ) @B oy (o)) () 2% dx

. b jb xR jb jb\ (jb\*@
=l (TG, T X0 (B y)  Jap (By) 0 (5)(5) ) (33)
We are going to see that
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b
f ()~ @B s (xey) b () X dx

n

_ i b jb

= lm = > (2 )
=1

) e BB

We are going to see that
b
[ G P p ) $) 2 dn
0
(a—p) ib 4a

=Y ) () e () ()

j=1
in the sense of convergence of ¢, 5 (w).

Indeed, lety € B,z (w)andm € N. Ithas, for somel € N,

b
Sl | v () ( j (xy) =P Joop (xy) P (x) x** dx
0

S ) s ()0 ()

j=1

b
< Cuyy kha,ﬁ 16%) ( f (cy)~ @B, g (xy) p(x) x** dx
0
RCENCION )

< Cuyp
KOG |

=1

/ jbqb(x)x “ Ty(hap ¥) (2) dx \
0

Note that from (2.9), it follows that
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b

@ | [ 900 21 2, (e ) () dx— i«p ) ()" 10 (g ) @
0 i Jj=1

/ f|¢(x)| x4 U DW®) gy \
<cem@| 0 |

[+ 2 2] () o)
<Cev®, 7€ (0,0).
Hence, if € > 0, there existsz, € (0, ) such that
Sup ¢ f B x4 1y ) () dx = qu ) ()" 1 (hag 1) | < e

Z2Zg

On the other hand, since the function H defined by
H@xz)= ¢ () x* 1, (hap) (@), x  z €[0,m),

isuniformly continuousin (x,z) € [0,b] X [0, z,], it has
e () 3) e ()

= f ¢ (x) x* 1, (ha,ﬁ 1/)) (x) dx,
0

uniformly in [0,x,].
From the above arguments we conclude (3.4) in the sense of convergence in

gq,p (W). Henceit has that
[ T2 8oy B dx = (T, [ )P pa) ) 3.
Aolso, O
Jim [ o) Jop () ¢ 4 dx = 0
:

in the sense of convergencein g, g (w).
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Indeed, assume that b >0, ¢ € B,z (w)and m € N. For acertain [ € N we have

that

5 | (9O [ @ gy () 9 x2 ax
b

< Cupg | hap (9O f ) B oy (ey) ) x* dx
b

<C Sup ew®

z € (0,0)

f P (0) Tx (hap ) (x) x** dx
b

<C f <d)(x) |elw(x) x*% dx v{féﬁ (1,0)).
b
Hence,

Jim 857 (90 [ G Jo () @) w4 dx | =
b

Now, standard arguments allow us to show that (3.1) holds.
Thus proof is compl eted.

Proposition 2.4 (i) alows us to define the Hankel type convolution T #¢ of T €

Hop W) and¢p € H,p (w) asfollows

(T#p) (x) = (T, 7, ¢p),  x € [0,00).
Note that the last definition extends the Hankel type convolution from

}[a,ﬁ (W) X }[a,ﬁ (W) to 7{“’3 (W)’ X }[a,ﬁ (W) Indeed, let ¢, l,[) (S }[a,ﬁ (W)

We can write

(T #9) () = (Tp 7 ) = f 3 (L) )
0

= (p#Y) (x), x €[0,00).

d
20-FTBa + )

Wenow provethat T # ¢ € H,pz (w) foreveryT € H,p (W) and ¢ € Hyp (W).

Proposition 3.2: Let T € H,p (W) and ¢ € H,p (w). Then T# ¢ is a continuous

function on [0,00). Moreover, thereexist C > 0 andr € N such that
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|(T#p) ()| < Ce™®,  x € [0,0).
Hence, T#¢ defines an element of #, 5 (w)'.
Proof: By Proposition 2.4 (ii), T#¢ is acontinuous function on [0, ).
Further, sinceT € H,z (w)’, from Proposition 2.3 it implies that there exist C > 0 and
r € N such that

() <€ max {478 @), vl D)}, ¥ € Hop (W),
In particular, we have
|(T#) ()] < € max {47F (. ), ik ()}, x € [0,0).
From (2.9), it is deduced that,
Aff (1,¢) < e™® Agf (), x € [0,0)andn € N.
Also (2.10) implies, since w satisfies the property (c), that

v () <CA+x) ) v2E($)
2

J

n
< Ce® Zvﬁf‘f (), x € [0,0) and r € N,
=0

forsomel € N.
Hence, for acertanm € N,
|(T#p) (x)| < Ce™™, x € [0,00).
Thus proof is compl eted.
Now, we introduce, for every m € N, the space A,,, (w) constituted by all those
functions f defined on (0, o) such that
Sup eT™W |f(x)| < co.

x €(0,00)
A careful reading of the proof of Proposition 3.2 allows us to deduce that if T €
Hep (W) thereexistsr € Nsuchthat T #¢ € A, (w)forevery ¢ € H, g (w).
Now we establish an associative property for the distributional convolution.
Proposition 3.3: Lett € H,p (W), and ¢, Y € Hyp (w). Then
(T#e) # = TH(P#). (35)
Proof: Following Proposition 3.2, T#¢ defines an element of #, z (w)" and we have

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[27826-2856]



[Waphare, 2(10): October, 2013] ISSN: 2277-9655
Impact Factor: 1.852

4a

Y d
20-FTBa + B)

(T ) () = j (TH#d) () () ()
0

- f (T,0,8) () )

Equality (3.5) will be proved when we see that, for every x € (0, ),

4a

y
2¢=BT(3a + B)

dy, x € (0,0).

4a

Y d
20-FTBa + ) ¥

j (T,7, &) (T) )
0

4a

y
29T (3a + B)

= (T(), f (e $) @) (T) ) dy).

We have (3.6)
b y4zx
[ 9)@ 6 0) 0 gy @

0

4a

4 d
20-FTBa + ) ¥

- j @ ¢) ) (&) )
0

= (tx @ #Y) () = 7, (p#P)(2),  x,2€ [0, 00).
Our objective is to prove (3.6). We will use a procedure similar to the one employed in
the proof of Proposition 3.1.
Let x € [0,00). By virtue of Proposition 3.2, it follows that

[oe) 4a
limy_q [, (T, 7,¢) (7x ) ) m dy =0. (3.7)

Assumethat m,n € N. According to (2.9), we can write

4%k, ( [ @) D@ 0155 )
0

d
20-FTBa + )

< 4a
w y ’
< | ™ 1) O Zrpiga gy @ AN @) b >0
0

Thus from Proposition 2.4 (i), it isinferred that

. o ) yha ~
I}I_E?oAm,n (J- (Tx9) @) () () 20-BT(3a + B) dY> = 0.
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On the other hand, for every b > 0,

1 n e 4a
(32) has ( | @90 ) 5 dy) ®
b

29T (3a + B)

- i(—l)j (7) fm (22) ) ¥ O~ Jo_py(y8) y** dy
=0 b

1\
x(30) hep @@, te (o)
Thus, by Proposition 2.4(i) and taking into account the boundedness of the function

z7%*F J,_p(z) on (0, ), wehave

af ° y4a
vl | [ @) 0) @) st @
b

n [ee]
<c Y vst @) [ )l yHeay 0, ashoe
j=0 b

Therefore, we see that

J, @$) ) @) @) m dy -0, asb - oo, (3.8)
in the sense of convergencein H, g (w).

Let b > 0. By using, asin the proof of proposition 3.1, Riemann sums, we can prove that

f0b<T, 7,9) (1Y) ) y** dy = (T(2), fob(fyd)) (2) (@) (v) y*@ dy). (39)
Thus by combining (3.7), (3.8) and (3.9), we deduce (3.6) and therefore proof of (3.5) is
compl eted.
Asaspecia case, we have following corollary.
Corollary 3.4: LetT € Hy,pz(w) and ¢, 3 € hyp (w). Then

(TH#p,P) = (T, p#). (3.10)

Proof: To see (3.10), it issufficient to take x = 0 in (3.5).
Remark 3: Note that the property in Corollary 3.4 is equivalent to the one in Proposition
3.3.Indeed, let T € Hyp(w) and ¢,y € Hyp (W).
If x €[0,00), 7, € Hyp (w) (Proposition 2.4 (i)). Then from Corollary 3.4 we
deduce
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(T#P)# ) (x) = (T, ¢ # (1Y)
= (T, 7 (¢ # 1))
= (T #(p# 1/))) (x), x € [0, ).
Thus Proposition 3.3 is established.
Now we obtain a distributional version of the interchange formula.
Proposition 3.5: LetT € H,z(w) and ¢ € Hyp (w). Then
heg (THP) = hg g (T) hep (¢).
Proof : Assumethatyp € H, s (w). According to Corollary 3.4, we can write
(hop (THP),  P) = (T#P, hap W) = (T, Pp# hyp (Y))
= (T,  hap (hap (@) V) = (hyp (T) hep (), 9).
Thus proof is completed.
Another consequence of Corollary 3.4 isthe following.

Proposition 3.6: The space

A (W) = U A, (W)

meN

isaweak * dense subspace of H, z(w)'.
Proof: It is sufficient to take into account the remark after Proposition 3.2 and to use
Proposition 2.7 and Corollary 3.4.

We now introduce the space F,, ; (w) that consists of all those T € B,z (w)’ for

which there exists afunction G belonging to A,, (w) for somem € N such that

T,0) = [y Gr ) hap (9) ) 5oy O € Bag (W) (3.11)

Note that the right hand side of (3.11) defines a continuous functional on
Hqp (W). Hence T can be extended to H, g (w) as an element of ,, ; (w)'. We denote
by T that extension to H, z (w). Moreover, for every ¢ € Hyp (W), it has

(hlys T,d) = (T, hag ()

[o e}

_ f Gr ) hag (hap(@®) )

0

4a

Y d
20-FTBa+ )
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o)

- f Gr () $()

0

4a

4 d
20-FTBa+p8)

Hence hy, 5 T coincides with the functional generated by Gy on H, g (w)".
We can also prove that if T € Fypp (w)and ¢ € Hyp (W), then THep and T. ¢ arein

Ta,ﬁ (W)
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