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on �0, ∞� and according to the Riemann-Lebesgue theorem for Hankel type transform 

([15]), lim%→� ��,� ��� �	� 
 0. 
The study of Hankel transformation in distribution spaces was studied by Zemanian 

([18],[19]). More recently Waphare and Gunjal [16] have investigated the ��,� � 

transform of generalized functions with exponential growth. Our objective in this paper is 

to define the Hankel type transformation on new distribution spaces that are in a certain 

sense, between the spaces considered in [16] and [18]. 

Following Zemanian [18], we can introduce the space ��,� that consists of all those 

complex valued and smooth functions � defined on �0, ∞� such that, for every ', ( ∈ ℕ, 

*+,,�,� ��� 
  -./% ∈ �
,���1 + 	��+  23�% 45,  3	���� ��	�52  ! ∞. 

On ��,� we consider the topology generated by the family 6*+,,�,� 7+,, ∈ ℕ  of seminorms. 

Then ��,� is a Frechet space and the Hankel type transformation 8�,� defined by  

8�,� ��� �	� 
  � �	���9��

  �����	�� ���� �� , 	 ∈ �0, ∞� ,  

is an automorphism of ��,� (see [18, Lemma 8]). Note that the two forms ��,� and 8�,� 

of Hankel type transforms are related through 8�,� ��� �	� 
  	��  ��,�:����� �; �	� , 	 ∈  �0, ∞� . 
The Hankel type transformation 8�,� is defined on the dual ��,�<  of ��,� by 

transposition. Altenburg [1] developed a theory similar to that of Zemanian for the �= � 

transformation. Note that the space ��� �⁄  coincides with the space � considered in [1].   

 In Waphare and Gunjal [16], the space ?�,� constituted by all the complex valued 

and smooth functions � defined on �0, ∞� satisfying  

@+,,�,�  ��� 
  -./% ∈  �
,�� A+%  BC1	  4D, 3	����� �	�5B  ! ∞, 
for each ', ( ∈  ℕ is considered.  
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In Waphare and Gunjal [16, Theorem 2.4] a characterization of the image by 8�,� of the 

space E�,� as a certain space of entire functions with a restricted growth on horizontal 

strips is given. The Hankel type transform 8�,� is defined on the corresponding dual 

spaces by transposition. We introduce here the space ��,� ��� constituted by functions 

whose growth is restricted by A,F , ( ∈  ℕ, where � is a function that we will define 

later. 

 Hirschman [11], Haimo [10] and Cholewinski [7] investigated the Hankel 

convolution operation. 

 The convolution associated with the ��,� �transformation is defined as follows. 

The Hankel type convolution G#�,� I of order � � � of the measurable functions G J(� I is given through  

:G#�,� I; �	� 
  � G��� : K�,� %I; �

 ��� ���2���Γ�3� + ��  ��, 

where the Hankel type translation operator  K�,� % I, 	 ∈  �0, ∞� , of I is defined by 

: K�,� % I; ��� 
  � I��� 4�,� �

 �	, �, �� ���2���Γ�3� + ��   ��, 

provided that the above integrals exists. Here 4�,� is the following function   

4�,� �	, �, �� 
  32���Γ�3� + ��5�  ��	O������� ���� �	O� ��O�������� ��O��

  

  ×  ��O������� ���� ��O� O��  �O, 	, �, � ∈  �0, ∞� . 
Moreover, we define K�,� Q I 
 I. 
The study of the #= � convolution on RS � spaces was developed in [10] and [11]. 

If we denote by R�,�,� the space of complex valued and measurable functions G on �0, ∞� 

such that  T |G�	�| 	�� �	 ! ∞,�
   

the following interchange formula  ��,� :G#�,�I; 
  ��,� �G� ��,� �I� , 
holds for every G, I ∈  R�,�,� . 
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The investigation of the distributional Hankel convolution was started by de Sousa-Pinto 

[13], who considered any U 
 0. Betancor and Marrero ([3], [4] and [12]) studied the 

Hankel convolution on the Zemanian spaces. In [16], Waphare and Gunjal analyzed the #�,� � convolution of distributions with exponential growth. 

In the sequel, since we think any confusion is possible, to simplify we will write #, K% , 	 ∈  V0WW, ∞� and D instead of #�,� , K�,� %, 	 ∈ V0, ∞� J(� 4�,�   respectively. 

As in [6], we consider continuous, increasing and non-negative functions � defined on V0, ∞�W such that ��0� 
 0, ��1� � 0, and it satisfies the following three properties  

(i) ��	 + ��  ≤ ��	� + ����, 	, � ∈ V0, ∞�, 
(ii) T �� �	� 	�⁄ � �	 ! ∞,��   and  

(iii) there exist J ∈  ℝ  and Z � 0 such that ��	�  ≥ J + Z log  �1 + 	�,   	 ∈  V0,WW∞�. 

We say � ∈  ℳ when � satisfies the above conditions. If � is extended to ℝ as an even 

function, then � satisfies the subadditivity property (i) for every 	, � ∈  ℝ.. 

Beurling [5] developed a general theory of distributions that extends the Schwartz 

theory. Some aspects of that theory were presented and completed by Bjorck [6]. Now we 

recall some definitions and properties from [2] which will be useful in the sequel. 

 Let � ∈  ℳ. For every J � 0 the space _�,�`  ��� is constituted by all those 

complex-valued and smooth functions � on �0, ∞� such that ��	� 
 0, 	 ≥ J, � and ��,� ���  ∈  R�,�,� and that  

a,�,� ��� 
  � b��,� ����	�b A, F�%� 	��  �	 !  ∞,�

  

for every ( ∈  ℕ.  _�,�`  ��� is a Frechet space when we consider on it the topology 

generated by the system 6a,�,�7, ∈ ℕ of seminorms. It is clear that _�,�`  ��� is 

continuously contained in _�,�c  ��� when 0 ! J ! Z. The union space 

_�,� ��� 
  d _�,�c  ���`e
  

is endowed with the inductive topology. 
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For every 	 ∈  �0, ∞�, the Hankel type translation K% defines a continuous linear 

mapping from _�,� ��� into itself. Then we can define the Hankel type convolution f # � of  f ∈   _�,� ���′ , the dual space of _�,� ��� and � ∈  _�,� ��� by �f#�� �	� 
  〈f, K% �〉 , 	 ∈  V0,WW∞� . 
By ℇ�,� ��� we denote the space of pointwise multipliers of _�,� ��� . ℇ�,� ��� is 

endowed with the topology induced by the topology of pointwise convergence of the 

space k 3_�,� ���5 of continuous linear mapping from _�,� ��� into itself. The space ℇ�,� ���′ dual of ℇ�,� ��� is characterized as the subspace of _�,� ���′ defining Hankel 

type convolution operators on _�,� ���.  

 Throughout this paper we always denote by l a suitable positive constant that can 

change from one line to another one. 

 

The space mn,o �p�  
In the sequel � is a function in ℳ. We now introduce the function spaces ��,� ���. A 

function � ∈  R�,�,� is in ��,� ��� when � and ��,� ��� are smooth functions and, for 

every ', ( ∈  ℕ, 

.+,, ��� 
  -./% q �
,�� A+ F�%� BC1	  4D,  � �	�B  !  ∞, 
and  

r+,,�,�  ��� 
  -./% q �
,��A+ F�%�  23�%  45,  ��,� ��� �	�2  !  ∞. 

On ��,� ��� we consider the topology generated by the family        

6.+,,, r+,,�,�7+,, ∈ ℕ 

of semi-norms. 

In the following we establish some properties of ��,� ��� that can be proved by 

invoking well-known properties of the Hankel type transformation ��,� and the 

conditions imposed on the function �.  
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Proposition 2.1 : (i) The space ��,� ��� is a Frechet space and it is continuously 

contained in ��� �⁄  . Moreover if � �	� 
 log �1 + 	�, 	 ∈  V0,WW∞�, then ��,� ��� 
��� �⁄  , where the equality is algebraical and topological. 

(ii) The Hankel type transformation ��,� is an automorphism of ��,� ���, 
(iii) The Bessel type operator ∆�,�
  	���� 4 	��  4 defines a continuous linear mapping   

from ��,� ��� into itself. 

(iv) If t is a polynomial, then the mapping � → t�	�� � is linear and continuous from ��,� ��� into itself. 

We now introduce a new family of seminorms on ��,� ��� that is equivalent to 

6.+,,,   r+,,�,�7+,, ∈ ℕ and that will be very useful in the sequel. 

Proposition 2.2: For every ', ( ∈  ℕ , we define u+,,�,�  ��� 
  Sup% ∈ �
,�� A+F�%� b∆�,�,  � �	�b ,   � ∈  ��,� ���, 
and  _+,,�,�  ��� 
  Sup% ∈ �
,��A+F�%�bΔ�,�,  ��,� ��� �	�b, � ∈  ��,� ���, 
where  Δ�,� represents the Bessel type operator 	���� 4 	��  4.  
The family 6u+,,�,�   , _+,,�,�7+,, ∈ ℕ of semi-norms generates the topology of ��,� ��� . 

Proof: Proposition 2.1 (ii) and (iii) imply that the topology defined on ��,� ��� by 

6.+,,, r+,,�,�7+,, ∈ ℕ is stronger than the one induced on it by 6u+,,�,�  ,   _+,,�,�7+,, ∈ ℕ . 

 Now we will see that 6u+,,�,� , _+,,�,�7+,, ∈ ℕ generates on ��,� ��� a topology finer 

than the one defined on it by 6.+,,,   r+,,�,�7+,, ∈ ℕ . 
For every z ∈  ℕ and � ∈  ��,� ���,  we have that  

3�%  45{ � �	� 
 	���������{ T 	{%
 T 	{�� … . . T 	���  Δ�,�{  � �	�� �	� … . �	{ ,   	 ∈%}
%~
�0, ∞�,                                                                                                                             (2.1) 

and 
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3�%  45{ � �	� 

��1�{	���������{  T 	{  T 	{�� … . T 	���  ∆�,�{  � �	�� �	� … . �	{, 	  ∈�%}  �%~�% �0, ∞�. (2.2) 

To prove (2.1) and (2.2), we must proceed inductively. We will show that (2.1). To see 

(2.2), we can argue in a similar way. 

 Formula (2.1) holds when z 
 1. Infact, according to Proposition 2.1 (i) and by 

[1, Lemma 8 b], it has, for every � ∈  ��,� ��� 

                                                   ���,�  C3�%  45 �D 
  ���,� ���.                                       (2.3) 

Moreover, by partial integration and by [20(7), Chapter 5], since the function ��9� ���� ��� is bounded on �0, ∞�, it has, for every � ∈  �0, ∞� and � ∈  ��,� ���,                                         ���,� :	������  T 	���  ∆�,� �%
  �	�� �	�; ���                           (2.4)  


  ����  � ��	 3�	������������ �	��5 � 	���  ∆�,� � �	�� �	� �	%



�

  

                    
 ��� ��,� :Δ�,� �; ���                      
  ���,� ��� ���. 
From (2.3) and (2.4) we deduce that (2.1) is true for every � ∈  ��,� ��� when z 
 1. 
 We now suppose that � ∈  ℕ and that, for every � ∈  ��,� ���,  
we have 

    3�%  45�  � �	� 
  	����������  T 	�%
  T 	��� … . T 	���  Δ�,��  � �	�� �	� … . �	�,%}
%�
    	 ∈  �0, ∞�.                                                                                                                    (2.5) 

We have to see that (2.5) holds when � is replaced by � + 1 for every � ∈  ��,� ���.  Let � ∈  ��,� ���. According to [1, Lemma 8], we can write 

3�%  45�9� � 
  ��1��9� ����9�9� ���,� �� . 
On the other hand, it is easy to see that the induction hypothesis (2.5) it deduces that, 

since Δ�,� � ∈  ��,� ���,  Proposition 2.1,  

	�����������9��  � 	�9�  � 	� … . . � 	���  ∆�,��9� � �	��%}



%���



%

  �	� … . �	�9� 
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 Λ�,�,�  C3�%  45�  ∆�,� �D �	� , 	 ∈  �0, ∞�                         (2.6)       

where  Λ�,� denotes the operator defined by  :Λ�,� �; �	� 
  	������  T O������9� � �O� �O,   	 ∈  �0, ∞� ,%
   for every � ∈ ��,� ���.                                                                                                  
Moreover, from (2.3), it follows that 

                                             3�%  45�  ∆�,� � 
 Δ�,�,�  3�%  45�  � .                                       (2.7)   

On the other hand, by partial integration and by [1, Lemma 8b] we obtain that, for every � ∈  ���/� , ��,�,�9� :Λ�,�,� Δ�,�,� �; ��� 


  ����  � ��	 3�	����9���  ����9��	��5 � O������9��9�∆�,�,� � �O� �O �	%



�

  


  ���,�,� ��� ���  , � ∈  �0, ∞�. 
Hence                                      Λ�,�,� Δ�,�,�  � 
  3�%  45  � , � ∈  ���/� .                            (2.8) 

From (2.6), (2.7) and (2.8), according to proposition 2.1 (i), it implies that  

3�%  45�9�  ��	� 

 	�����������9��  T 	�9�  T 	 … . . T 	���  Δ�,��9� � �	�� �	� … . . �	�9�,   	 ∈  �0, ∞�%}
%���
%
 . 

Thus (2.1) is proved. 

Now let ', ( ∈  ℕ. Assume that � ∈  ��,� ���.  From (2.1) it follows that  

A+F�%�  BC1	  4D,  ��	�B 
≤ l -./� ∈ �
,��b∆�,�,  � ���b	���������,  � 	,  � 	,�� … … � 	���  �	� … . . �	,

%}

  %�



%


  

≤ l -./� ∈ �
,�� b∆�,�,  � ���b  , 	 ∈ �0,1�. 
Also, by using (2.2), since � is increasing and it satisfies the (iii) property, we obtain for � ∈  ℕ large enough, 
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A+F�%�  BC1	  4D,  ��	�B  ≤  	���������,  � 	,  � 	,9� … .�
%�

� 	���  A+F�%�� b∆�,�,  ��	��b�
%}

�
%  

                                                                                                            ×  �	� … . �	,              ≤ l -./� ∈ �
,�� A�+9��F��� b∆�,�,  � ���b,   	 ≥ 1. 
Hence, it concludes that, for a certain � ∈  ℕ, .+,, ���  ≤ l u+9�,,�,�  ���. 
According to Proposition 2.1 (ii) ��,� ��� is also in ��,� ��� and then the following 

inequality also holds r+,,�,����  ≤ l _+9�,,�,� ���. 
Thus we prove that the topology generated by 6u+,,�,�  , _+,,�,�7+,, ∈ ℕ on ��,� ��� is finer 

than the one induced on it by 6.+,, , r+,,�,�7+,, ∈ ℕand thus the proof is completed. 

 Through the proof of Proposition 2.2 we also show the following 

characterizations of the space ��,� ���. 
Proposition 2.3: A function � ∈  ��,� ��� if and only if � ∈  ���/� and � satisfies one 

of the following three conditions:  

(i) For every ', ( ∈  ℕ, u+,,�,�  ���  !  ∞ J(� _+,,�,�  ���  !  ∞,  
(ii) For every ', ( ∈  ℕ, u+,,�,�  ���  !  ∞  J(� r+,,�,�  ���  !  ∞, 
(iii) For every ', ( ∈  ℕ, .+,, ���  !  ∞  J(� _+,,�,�  ���  !  ∞. 
Moreover, the families of seminorms 6u+,,�,�  , _+,,�,�7+,, ∈ ℕ , 6u+,,�,�  , r+,,�,�7+,, ∈ ℕ and 

6.+,, , _+,,�,�7+,, ∈ ℕ generates the topology of ��,� ���.    
      We now analyze the behavior of Hankel type translation operator on ��,� ���. 
Proposition 2.4: (i) Let 	 ∈  �0, ∞�. The Hankel type translation operator K% defines a 

continuous linear mapping from ��,� ��� into itself.  

(ii) Let � ∈  ��,� ���. The (nonlinear) mapping �� defined by �� �	� 
  K%�, 	 ∈�0, ∞� is continuous from V0WW, ∞� into ��,� ���.  
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Proof: (i) Let � ∈  ��,� ��� and ', ( ∈  ℕ. Since ∆�,� K% � 
  K% ∆�,� � ([12, 

Proposition 2.1]) and since � is increasing and it satisfies the property (i), we can write  A+F��� bΔ�,�,  �K% �� ���b ≤  A+F��� K% :b∆�,�,  �b; ��� 

≤  A+ :F����F�|%��|�;  � 4�	, �, �� A+F��� b∆�,�,  ����b ���2���Γ �3� + ��  ��%9�
|%��|  

≤  A+F�%�  -./� ∈ �
,�� A+F��� b∆�,�,  � ���b � 4 �	, �, �� �



���2��� Γ�3� + ��  ��, 
for each � ∈  �0, ∞�. 
Hence by [11, (2)], it concludes                                               u+,,�,�  �K% ��  ≤  A+F�%� u+,,�,�  ���.                                      (2.9) 

On the other hand, by [3,(3.1)] and [20, (7), Chapter 5], since the function ����������� ��� is bounded on �0, ∞�, it follows 

A+F���  BC1�  4D+  ��,� �K%�� ���B 

  A+F���  BC1�  4D,  32��� Γ�3� + ���	�������� ���� �	�� ��,� ������5B 

            ≤ l � A+F���  BC1�  4D,��  ��,� ��� ���B 	��  ,   ,
��
 �  ∈  �0, ∞�. 

Then                                      r+,,�,�  �K% ��  ≤ l �1 + 	�,� ∑ r+,��,� ��� ,��
  .                              (2.10) 

From (2.9) and (2.10) we deduce that K% is continuous from ��,� ��� into itself.  

(ii) Let � ∈  ��,� ��� . Assume that 	
  ∈  �0, ∞� and ', ( ∈  ℕ. We can write for 

every 	 ∈  V�	
/2�,   �3	
/2�� and � ≥ 2	
 , A+F���  2∆�,�, 3�K%�� � :K%��;5 ���2   
≤  A�+9�� �F����F:����%�/��;��F��� -./� ∈ �
,�� A�+9��F��� b∆�,�,  ����b 
× � |4�	, �, �� � 4 �	
, �, ��|�9��%�/��

����%�/��
���2���Γ�3� + ��  �� 
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≤ 2 A�+9��F��%�/���F��� -./� ∈ �
,�� A�+9��F��� b∆�,�,  ����b . 
Hence, if � � 0, then there exists ��  ≥ 2	
 such that, for every 	 ∈  V�	
/WW2� , �3	
/2�� 
and � ≥ �� , A+F���  2∆�,�, 3�K%�� � :K%��;5 ���2 !  �. 
On the other hand, since � is increasing on V0,WW∞�, it has  -./� q �
,   ��� A+F���  2∆�,�,  3�K%�� � :K%�  �;5 ���2 
≤  A+F����  -./� ∈ �
,��� 2∆�,�,  3�K%�� � :K%��;5 ���2 . 
Therefore, according to [12, p.359], since Δ�,� is a continuous operator from ���/� into 

itself, we deduce that if � � 0, then  -./� ∈ �
,��� A+F���  2∆�,�,  3�K%�� � :K%��;5 ���2  !  �, 
provided that 	 ∈  �0, ∞� and |	 � 	
| ! a, for some a � 0. 
Thus we conclude that, for every � � 0, there exists a � 0 for which u+,,�,�  :K%� � K%��;  !  � , 
when 	 ∈  �0, ∞� and |	 � 	
| !  a. 

Moreover, the Leibniz rule and again [3,�3.1�] and [20(7), Chapter 5] lead to  

C1� ���D,  3��,� �K%�� � K%�� ���5 


  2���Γ�3� + �� � 3(� 5 ��1��  C1� ���D,��  ��,� ��� ���,
��
  

× 3	��  �	����9��� ����9�  �	�� � 	
��  �	
����9�������9� �	
��5 , 	, � ∈ �0, ∞�. 
Hence, the boundedness of the function ����������� ��� , � ∈  �0, ∞�, implies that if � � 0, 
A+F���  BC1� ���D,  3��,� :K%� � K%��;���5B 
≤ l A�F���  ∑ :	�� + 	
��; r+9�,,���,�  ���  ! �,��
 , 

for each 	 ∈  �0, 2	
� and � ≥ ��,  where �� is a large enough positive number.  
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 On the other hand, since the function G�  �	, �� 
  2��  �	����9��� ����9�  �	��,	, � ∈  V0,WW∞�, is continuous (and hence uniformly continuous in each compact subset of V0,WW∞�  × V0,WW∞�� ,  for every � ∈ ℕ, if � � 0 we can find a � 0 such that bG�  �	, �� �G�  �	
, ��| !  � , for every � ∈  V0, ���, 	 ∈  V0,WW∞�, |	 � 	
| ! a and � 
 0, … . . , (. Then  

-./� ∈ �
,��� A+F���  BC1� ���D,  3��,� K% � � K%�� ���5B ≤ l � � .+,��,� ���,,
��
  

for every 	 ∈  �0, ∞� and |	 � 	
| ! a. 
Thus, it is concluded that for every � � 0, there exists a � 0 such that  .+,,�,� :K%� � K%��;  !  � , 
provided that 	 ∈  �0, ∞� and |	 � 	
| ! a. 
Hence �� is a continuous function on 	
. 
To see that  �� is continuous in 	 
 0, we can proceed in a similar way. 

Thus proof is completed. 

 Next, we study the pointwise multiplication and the Hankel type convolution on ��,� ���.   
Proposition 2.5: The bilinear mappings defined by  ��, ��  →  �� 

and  ��, ��  →  � # � 

are continuous from ��,� ��� × ��,� ��� into ��,� ��� . 
Proof: By virtue of the interchange formula [12, Theorem 2d] ��,� ��#�� 
  ��,� ��� ��,� ���, �, � ∈  ��,� ���, 
the continuity of the pointwise multiplication mapping is equivalent to the one of the 

Hankel type convolution mapping. 

Let ', ( ∈  ℕ. Assume that �, � ∈  ��,� ���, we can write, from the Leibniz rule, that  

.+,, ����  ≤ l � .+,,,� ��� .
,� ���,
��
  . 

On the other hand, since Δ�,� ��#�� 
  :Δ�,� �; # �  [14, Proposition 2.2] and since � 

is increasing on V0,WW∞� and it satisfies the property (i) of Section 1, it has  
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A+F�%� b∆�,�,  ��,� ���� �	�b 
 
  A+F�%�  2C3∆�,�,  ��,����5 # ��,� ���D �	�2 
≤  A+F�%�  � b∆�,�,  :��,��;���b�


  A�+F�|%��|� 

×  � 4�	, �, �� b��,� ��� ���bA+F��� ���2��� Γ�3� + ��  ��%9�
|%��|  ���2���Γ�3α + β�  �� 

≤  �b∆�,�,  :��,� �; ���b�

 A+F��� � 4�	, �, �� b��,� ������b A+F���%9�

|%��|  

×  ���2���Γ�3� + ��  �� . ���2���Γ�3� + ��  �� , 	 ∈ �0, ∞�. 
Hence, since � verifies the property (i) of Section 1 and by taking into account [11], we 

can conclude 

 _+,,�,�  ����  ≤ l _+9�,,�,�  ��� _+,
�,� ��� , for some � ∈  ℕ. 
By virtue of Proposition 2.3, we have proved that the pointwise multiplication defines a 

continuous mapping from  ��,���� × ��,���� �(O� ��,����. 
Thus the proof is completed. 

Remark 1: The last proposition shows that each function in ��,� ��� defines a 

multiplier in ��,� ���. Also, in the proof of Proposition 2.4, it was established that for 

every 	 ∈  �0, ∞� the function G% defined by  G%��� 
  �	������������ �	�� , � ∈  �0, ∞�, 
is a multiplier of ��,� ���. 

 In [2] we introduced the space _�,� ��� (see Section 1 for definitions). _�,� ��� 

can be considered as a Beurling type function space for the Hankel ��,� transformation. 

In the following we establish that _�,� ��� is dense subset of ��,� ���.  
Proposition 2.6: The space _�,� ��� is continuously contained in ��,� ���. Moreover, _�,� ��� is a dense subspace of ��,� ���. 
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Proof: Let � ∈  _�,�`  ��� , where J � 0. Since � and ��,� ���  ∈  R�,�,� , according to 

[11, Corollary 2], it has  

� �	� 
  � �	���������

 ���� �	�� ��,� ��� ��� ��� ��, 	 ∈  �0, ∞�. 

Hence by invoking [20 (7), Chapter 5], since ����������� ��� is a bounded function on �0, ∞� and � satisfies the property (iii) of Section 1 for every ', ( ∈  ℕ, we can find � ∈  ℕ for which    .+,, ���  ≤ l -./% ∈ �
,`� A+F�%�  T ��,9�� b��,� ������b�� ≤ l a��,�����
 .      (2.11) 

Here l is a positive constant that is not dependent on �. 
By virtue of the Paley-Wiener type theorem for the Hankel type transform on _�,�`  ��� 

([2, Proposition 2.6]), ��,� ��� is an even entire function and for every ' ∈  ℕ, there 

exists l+  � 0 for which                              b��,� ��� �	 + ���b ≤  l+ A�+F�%�9�`9��|�| , 	, � ∈  ℝ.                  (2.12) 

According to the well-known Cauchy integral formula, we can write 

                         ���%�  ��,� ��� �	� 
  �!��   T ¡¢,£ ��� ������%����  ��,   � ∈ ℕ J(� 	 ∈  ℝ,¤¥             (2.13) 

where l% represents the circled path having bi-parametric representation � 
 	 + A ¦ ,§ ∈  V0,WW 2¨�. 
Let ', ( ∈  ℕ. From (2.12) and (2.13), it follows, since � satisfies the property (i), that 

© �,�	,  ��,� ��� �	�©  ≤ l � A�+F�%9ª«¬ ¦�9�`9��|¬ ,¦|�§ ≤ l A�+F�%� ,   	 ≥ 1.��

  

Thus, it follows 

BC1	 ��	D,  ��,� ��� �	�B  ≤ l A�+F�%� , 	 ≥ 1. 
Moreover, by using again the above-mentioned properties of the Bessel type functions, 

we have 

BC1	  ��	D,  ��,� ��� �	�B  ≤ l � ��,9�� |����| �� ≤ l .
,
 ���,   	 ∈  �0,1�.`

  

Thus we conclude that r+,,�,�  ���  !  ∞. 
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We have proved that _�,�`  ���  ⊂  ��,� ���.  
To see that _�,�`  ��� is continuously contained in ��,� ��� we will use the closed graph 

theorem. Assume that ®�¯°¯ ∈ ℕ is a sequence in _�,�`  ��� such that �¯  →  � as r →  ∞,  
in _�,�`  ��� and �¯  →  � as r →  ∞, in ��,� ���. It is clear that �¯  �	� → ��	�  J± r → ∞ for every 	 ∈  �0, ∞�. Moreover, from (2.11) we deduce that �¯ �	�  →  � �	� as                r → ∞ for each 	 ∈  �0, ∞�. Hence � 
 �. Thus we show that _�,�`  ���  ⊂  ��,� ��� is 

continuous. 

We now see that r�,���� is a dense subset of ��,� ���.  According to [2, Proposition 

2.18] we choose � ∈  _�,��  ��� such that 0 ≤  � ≤ 1 and ��	� 
 1, 	 ∈  �0,1�. 
Assume that � ∈  ��,� ���.  We define for every � ∈  ℕ � ®0°, ��  �	�  
 � �	 �⁄ �,    	 ∈ �0, ∞� and �� 
  ��  � .  Let ', ( ∈  ℕ. The 

Leibniz rule leads to, for every  � ∈  ℕ � ®0°,  
A+F�%�  BC1	  4D,  :��  �	� �  ��	�;B  ≤  -���	� +  -�� �	�, 	 ∈ �0, ∞�, 

where 

-�� �	� 
  � 3(� 5 A+F�%�  BC1	  4D� � �	�B BC1	  4D,��  � 3	� 5B , 	 ∈ �0, ∞� ,   ,��
��
  

and  

-�� �	� 
 A+F�%�  BC1	  4D�  � �	�B 2� 3	� 5 � 12 , 	 ∈ �0, ∞�. 
Standard arguments allow us now to conclude that .+,, ��� � ��  → 0, J± � → ∞. 
 On the other hand, by [11, Theorem 2d],  since ���0� 
 1, � ∈ N � ®0°, 
we can write Δ�,�,  ��,� ��� � �� �	�. 

  3��,� ���� # Δ�,�,  ��,� ���5 �	� �  Δ�,�,   ��,� ��� �	� 


  � ��,� �

  ���� ��� CK% 3∆�,�,  ��,� ���5 ��� � Δ�,�,  ��,� ��� �	�D ���2���Γ �3� + ��  ��, 

for each 	 ∈ �0, ∞� and � ∈ ³ � ®0°. 
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Fix  � ∈ ³ � ®0° . To simplify we denote by Φ 
  Δ�,�,  ��,� ���.  It is not hard to see that ��,� ���� ��� 
  �����9�� ��,� �������, � ∈ �0, ∞� . Then ∆�,�,  ��,� ��� � �� �	� 


  � ��,� ��� ��� µK% �Φ� 3�� 5 �  Φ�	�¶ ���2���Γ�3� + ��
�


  ��, 	 ∈ �0, ∞�. 
We now consider � ∈  �0,1� that will be specified later. We divide the last integral into 

two parts.  

     According to [11 �2�], since � is an increasing function on V0W, W∞�,  we have that  

· � ��,������� � 4 3	, �� , �5 :Φ���%9�/�
|%��/�|%9�¸

� Φ�	�; ���2���Γ�3� + ��  �� ���2���Γ�3� + ��  ��· 
≤ l -./� ∈  �0, ∞� |Φ ���| � b��,� ��� ���b ��� ���

%9�¸
 

≤  l � A��+9{�F��� �
%9�¸

��� �� . -./� ∈  �0, ∞� |Φ���| -./� ∈  �0, ∞� b��,� ��� ���b A�+9{� F ���  
≤  l A�+F���  � A�{F����

�¸
��� �� . -./� ∈  �0, ∞� |Φ���| -./� ∈  �0, ∞� b��,� ��� ���b A�+9{� F ��� , 

for every 	 ∈  �0, ∞� and z ∈  ℕ. 
 Hence, since � satisfies the property (i) of Section 1, by choosing z ∈  ℕ large 

enough it follows that  

-./% ∈�
,�� ·A+F�%� � ��,� ����
%9�¸

��� � 4 �	, � �, �⁄ � :Φ��� � Φ�	�;%9�/�
|%��/�|

×  ���2��� Γ�3� + ��  �� ���2���Γ�3��  �� ·  
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≤ l T A�{F��� ��� �� -./� ∈�
,��|Φ���| -./� ∈ �
,��b��,� ��� ���b A�+9{� F ��� → ��¸ 0,J± � → ∞  

On the other hand, by again using [11, (2)], one obtains, for every 	 ∈  �0, ∞�,   
·A+F�%�  � ��,� ��� ��� � 4�	, � �, �⁄ � :Φ��� � Φ�	�; %9� �⁄

|%��/�|
%9�¸



×  ���2���Γ�3� + ��  �� ���2��� Γ �3� + ��  �� · 

≤ l -./� ∈ �
,�� b��,� ������b A+F�%��	 + �����9��   Sup|%�� ¹⁄ |º � º %9 � ¹ |»�¼��»�½�|,⁄
¾�¾%9�¸
      

          Moreover, we have that, for each @ ∈  �0, 	 + ��� and 	 ∈  �0, ∞�,   
2Φ 3	 + @� 5 � Φ �	�2  ≤  � © ��O  Φ�t�©  �O%9�, �⁄ �

%  

      ≤  1�  �	 + ��� -./�%��¸º Àº%9�¸ ©C ��O  ΦD C	 + Á� D© . 
Also, we can write 

2Φ 3	 + @� 5 � Φ �	�2  ≤  1�  �	 + ��� -./�%��¸º À º%9�¸  ©C ��O  ΦD C	 + Á� D©, 
for each 	 ∈ �0, ∞� and @ ∈  ��	 � ��, 0�.  
If it is necessary above we consider the even and smooth extension of Φ to ℝ. Hence, it 

has  

·A+F�%�  � ��,� ��� ��� � 4�	, � �, �⁄ � :Φ ��� � Φ�	�; %9� �⁄
|%��/�|

%9�¸



×  ���2���Γ�3� + ��  ��  ���2���Γ�3� + ��  ��· 

≤ l -./� ∈ �
,��b��,� ������b A+F�%� 1�  �	 + ����
�9�� -./�%��¸º À º %9�¸ ©C1O  ��O  ΦD C	 + Á� D©  
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≤ l -./� ∈ �
,��b��,� ������b A+F�%��{F3%�3%� 5��¸Â�5  1� �	 + ����
�9��  
× -./� ∈ �
,�� ©1�  ���  Φ���© A{F���,  

provided that 	 ≥ 2, z, � ∈  ℕ  and � ≥ 2. Note that if  	, � ≥ 2, 	 ≥  ��� �� � 1�⁄ �.  
Then  

·A+F�%�  � ��,� ��� ��� � 4 �	,  � �, �⁄ � :Φ ��� � Φ�	�;%9� �⁄
|%�� ¹⁄ |

%9�¸


  
×  ���2���Γ �3� + ��  ��.  ���2���Γ�3� + ��  ��· 

                               ≤ l ����
�9����� �	 + 1��
�9�� A+F�%��{F �%��% �⁄ ���¸Â��, 
when 	 ≥ 2, �, z ∈  ℕ  J(�  � ≥ 2. 
 Since � is increasing on V0,WW∞� and � verifies the property (i), we have that   

� 3	 � 	� � ����5  ≥  12  ��	� � ��1�, 	 ≥ 2, �, z ∈  ℕ  J(� � ≥ 2,  
hence by choosing z large enough, since � satisfies the property (i), we have  

·A+F�%�  � ��,� ��� ��� � 4 �	, � �, �⁄ �:Φ��� � Φ�	�; %9� �⁄
|%�� �⁄ |

%9�¸



× ���2���Γ �3� + ��  �� ���2���Γ�3� + ��  �� · 

≤ l ����
�9����� , 	 ≥ 2, �, z ∈  ℕ  J(�  � ≥ 2. 
Assume now that 0 ! � ! 1/�10� + 6��. Then we conclude that 

-./%Ä� ·A+F�%�  � ��,� ��� ��� � 4 �	, � �, �⁄ � :Φ��� � Φ�	�; %9�/�
|%�� �⁄ |

%9�¸



×  ���2���Γ�3� + ��  �� ���2��� Γ�3� + ��  �� · → 0,   J± � → ∞. 

By proceeding in a similar way we obtain that 
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-./
º%º� ·A+F�%�  � ��,� ��� ��� � 4 �	, � �, �⁄ �%9� �⁄
|%�� �⁄ |  :Φ��� � Φ�	�; %9�¸



×  ���2���Γ�3� + ��  �� ���2���Γ�3� + ��  �� · 

≤ l -./� ∈ �
,�� b��,� ��� ���b 1�  �2 + ���
�9��  -./� ∈ �
,�� ©1�  ���  Φ ���©  → 0,   J±  � → ∞, 
provided that 0 ! � ! 1:2��� + 4;. 
Thus, we deduce that _+,,�,�  ��� � ��  → 0, J± � → ∞. 
By taking into account Proposition 2.3, the proof is now complete. 

Remark 2: According to [2, Corollary 2.8], the Property (ii) (for w) is essential to 

establish the non-triviality of the space _�,� ���. Indeed the function ��	� 
 A�%} �⁄ , 	 ∈  V0,WW∞� is in ��,� ��� . (see [8, (10)]) provided that ��	�  ≤ l 	� ,  when 	 is 

large for some � ! 2.  
 Next we establish a result concerning approximated identity in  ��,� ��� 

involving Hankel type convolution. This property whose proof will be omitted can be 

proved following a procedure similar to the one employed to prove [3, Proposition 3.5] 

and [17].  

Proposition 2.7: Assume that � ∈  _�,� ��� and that T � �	� 	��  �	 
  2����
 Γ�3� +��. Then for every � ∈  ��,� ���, � # �+  →  �, J±  ' → ∞, �(  ��,� ��� where, for 

each ' ∈  ℕ, �+ �	� 
  '��9�� � �'	�,   	 ∈  �0, ∞�.     
Hankel type transformation and Hankel type convolution on the spacemn,o �p�′  

In this section we study the Hankel type transformation and the Hankel type 

convolution on ��,� ���<,  the dual space of ��,� ���. Our results can be seen as an 

extension of the ones presented in [12]. 

 Suppose that G is a measurable function on �0, ∞� such that, for some z ∈  ℕ,  
� A�{F�%� |G�	�| 	�� �	 !  ∞,�
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then G defines an element fÆ  ∈  ��,� ���< by  

〈fÆ , �〉 
  � G�	� �

 ��	� 	��2���Γ �3� + ��  �	, � ∈  ��,� ���.  

Indeed, for every � ∈  ��,� ���,  it has 

b〈fÆ , �〉b  ≤ l � A�{F�%�|G�	�|	�� �	�

  .{,
 ���.  

In particular the space ��,� ��� can be identified with a subspace of ��,� ���<. 
 On the other hand, if � ∈  ��,� ���  then � ∈  Ç�,� ���, the space of pointwise 

multipliers of _�,� ���. Indeed, let � ∈ ��,� ��� . Assume that � ∈  _�,�`  ��� with J � 0. Then � �	� ��	� 
 0, 	 ≥ J.  Moreover for every ( ∈  ℕ,                    a,�,� ���� 
 T A,F�%� b��,� �����	�b 	�� �	 ≤ l �
 a,�,� ��� r�,
�,� ���,  
where � ∈  ℕ is chosen large enough and it is not depending on �. Note that we also have 

proved that ��,� ��� is continuously contained in Ç�,� ���. Hence, the dual space of  Ç�,� ���< of Ç�,� ���  ⊂  ��,� ���<. 
 We define the Hankel type transformation on ��,� ���< by transposition. That is, 

if f ∈  ��,� ���<, the Hankel type transform ��,�<  f of T is the element of ��,� ���< 
given through  〈��,�<  f, �〉 
  〈f, ��,� �〉, � ∈  ��,� ��� . 
The generalized Hankel type transformation ��,�<  can be seen as an extension of the 

Hankel type transformation ��,� . Let � ∈  ��,� ���. Since ��,� ���  ∈  ��,� ���,��,� ��� defines an element  f¡¢,£ ��� of  ��,� ���′ by  

〈f ��,� �È�, �〉 
  � ��,� ����	� ��	� 	��2��� Γ�3� + ��  �	,   � ∈  ��,� ���.�

  

Moreover, Parseval equality for Hankel type transformation leads to  

〈f¡¢,£  ���, �〉 
  � ��	� ��,� ����	� 	��2���Γ�3� + ��  �	,   �

  

             
  〈fÈ,  ��,� ���〉 , � ∈  ��,� ���. 
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Thus, we have shown that f¡¢,£ �É� 
  ��,�<  :fÈ; .  
 Now, we determine the Hankel type transform of the distributions in Ç�,����′. 
Proposition 3.1: If f ∈  Ç�,����<, the Hankel type transform ��,�<  f coincides with the 

functional defined by the function ��	� 
  2���Γ�3� + �� 〈f���, �	�������������	��〉 , 	 ∈  �0, ∞�. 
Then  ��,�<  f is a continuous function on V0, ∞�W and there exist l � 0 and Ê ∈  ℕ for 

which  b��,�<  �f� �	�b  ≤ l AËF�%�, 	 ∈  �0, ∞�. 
Proof : Let f 
 Ç�,����′. We have to see that  

:��,�<  �f�, �; 
 〈f, ��,� ���〉 
  � 〈f���, �	�������������	��〉 � �	� 	�� �	,�

  

for every � ∈  ��,� ���.                                                                                             (3.1) 

 In [2, Proposition 3.4] we proved that, for every 	 ∈  �0, ∞�,  the function G% 

defined by G% ��� 
  �	����%��� ���� �	��, � ∈  �0, ∞�  is in Ç�,���� . 
Hence, we can define the function � �	� 
  〈f���, �	�������� ���� �	��〉, 	 ∈  V0,WW∞�. 
Thus � is continuous function on V0,WW∞�. Indeed, let 	
  ∈  V0,WW∞�.  To See that F is 

continuous at 	
, it is sufficient to show that, for every ( ∈  ℕ and � ∈  _�,� ���, 
a,�,� 3�����	�������������	�� � �	
�������������	
��5 → 0, J± 	 → 	
. 

Assume that ( ∈  ℕ and � ∈  _�,� ���. By virtue of [3, (3.4)], it follows for every 	, � ∈  V0, ∞�,W ��,�  3���� �	����9� �����	�� � �	
�������������	
��5  ��� 


 12���Γ�3� + �� 3K% :��,��;��� � K%�:��,��; ���5. 
According to Proposition 2.4 (ii) and Proposition 2.6, the mapping G defined by Ì �	� 
  K% :��,� �;, 	 ∈  V0,WW∞�, 
is continuous from V0,WW∞� into ��,� ���. Moreover, since � satisfies the property (iii), 

there exists � ∈  ℕ such that 
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a,�,�  C3��	������������	� � �	
������������	
�5D 


  12���Γ�3α + β� � A, F��� bK% :��,� �; ��� �  K%�:��,� �; ���b ��� ���

  

              ≤ l .,9�,
  3K% :��,� �; � K%�:��,� �;5 , 	  ∈  V0,WW∞�. 
Hence, 

a,�,�  C���� 3�	����9������	�� � �	
����9������	
��5D  → 0, J± 	 →  	
.  
Moreover, since f ∈  Á�,����< ,  there exists l � 0,  Ê ∈  ℕ and ��,…..,, �Ë  ∈  _�,� ���, |〈f, Φ〉| ≤ l max���,….,Ë aË�,� :��  Φ;, Φ ∈   Ç�,����. 
In particular, since � has the property (iii) for every 	 ∈  �0, ∞�, 

b〈f���, �	�������������	��〉b  ≤ l 'J	���,�,…,Ë � AËF�%� bK%:��,� ��; ���b ��� ���

  

                               ≤ l max���,…,Ë .Ë9�,
  3K% :��,� ��;5 , 
for some � ∈  ℕ. Then by (2.9), it follows that    b〈f���, �	�������� ���� �	��〉b  ≤ l A�Ë9��F�%� max���,…,Ë rË9�,
�,�  :��; , 	 ∈  V0,WW∞�.     (3.2) 

From (3.2), we infer that the integral in (3.1) is absolutely convergent for every � ∈��,� ���. 

Assume that � ∈  ��,� ���, It is clear that 

limc→� � 〈f���, �	����9� ���� �	��〉 ��	� 	�� �	 
 0.  �
c  

Let Z � 0. we can write 

�〈f���, �	�������� ���� �	��〉 ��	� 	�� �	�

  

             
  lim,→� 〈f���, c,  ∑ 3�c,  �5��9� ���� 3�c,  �5  � 3�c, 5 3�c, 5�� ,��� 〉               (3.3) 

We are going to see that    
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� 〈�	�������������	�� � �	� 	�� �	c




  lim,→� Z( � C�Z(  �D��9�,
��� ���� C�Z(  �D  � C�Z( D C�Z( D��  〉 . 

We are going to see that 

��	�������������	�� ��	� 	��  �	c




  lim,→� Z( � C�Z( �D������ ����
,

���  C�Z( �D  � C�Z( D C�Z( D�� , 
in the sense of convergence of Ç�,� ���. 
Indeed, let � ∈  _�,� ��� and ' ∈  ℕ.  It has, for some � ∈ ℕ, 
a+�,� Ï���� Ð��	����9�c


  ���� �	�� ��	� 	�� �	 
�  Z( � C�Z(  �D��9� ����  C�Z(  �D  � C�Z( D C�Z( D��,

��� ÑÒ 

≤ l .�,
  
ÓÔ
Õ��,�  Ï���� Ð��	������������ �	�� ��	� 	�� �	c




� Z( � C�Z( �D��9�  ���� C�Z(  �D  � C�Z( D C�Z( D��,
��� ÑÒ

Ö×
Ø  

≤ l .�,
  
Ó
ÔÔÕ

� ��	� 	�� K%:��,� �; ��� �	 c

– Z( � � C�Z( D C�Z( D�� K�c ,⁄  :��,� �; ���,

��� Ö
××Ø . 

Note that from (2.9), it follows that 
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A�F���  ·� ��	� 	��  K% :��,� �; ��� �	c

 � Z( � � C�Z( D C�Z( D��  K�c ,⁄  :��,� �; ���,

��� · 

≤ l A�F���  
Ó
ÔÔÕ

�|��	�| 	�� A��9��F�%� �	c

+ Z( � ©� C�Z( D© C�Z( D�� A��9��F��c ,⁄ �,

��� Ö
××Ø 

≤ l A�F��� , � ∈  �0, ∞�. 
Hence, if � � 0, there exists �
  ∈  �0, ∞� such that  

Sup�Ä�� A�F���  ·� ��	� 	�� K%:��,� �; ��� �	 � Z(  � � C�Z( D C�Z( D��  K�c ,⁄  :��,� �; ���,
���  c


 ·  !  �.  

On the other hand, since the function 8 defined by 8 �	, �� 
  � �	� 	�� K% :��,� �; ���, 	, � ∈ V0WW, ∞�, 
is uniformly continuous in �	, ��  ∈ V0, Z� × V0, �
�,  it has 

lim,→� Z( � � ,
��� C�Z( D C�Z( D��  K% :��,� �; C�Z( D 


  � � �	� 	��  K% :��,� �; �	� �	,c

  

uniformly in [0,	
]. 

 From the above arguments we conclude (3.4) in the sense of convergence in Ç�,� ���.  Hence it has that  

�〈f���, �	����9������	��〉 ��	�	�� �	 
 〈f���, ��	����9������	�� ��	� 	���	c

 〉c


 . 
Also, 

limc→� ��	����9� ���� �	�� �
c ��	� 	�� �	 
 0 

in the sense of convergence in Ç�,� ���. 
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Indeed, assume that Z � 0, � ∈  _�,� ��� and ' ∈  ℕ.  For a certain � ∈  ℕ we have 

that  

a+�,� ÏÐ���� ��	����9� ���� �	�� ��	� 	�� �	�
c ÑÒ 

≤ l .�,
  Ï��,�  Ð���� � �	����9����� �	�� ��	� 	�� �	�
c ÑÒ 

≤ l -./� ∈ �
,�� A�F���  Ú� ��	� K% :��,� �; �	� 	�� �	�
c Ú 

≤ l � C��	� 2A�F�%� 	��  �	 r�,
�,� W ���D .�
c  

Hence, 

limc→� a+�,�  Ð���� � �	����9� ���� �	�� ��	� 	��  �	 �
c Ñ 
 0. 

Now, standard arguments allow us to show that (3.1) holds. 

Thus proof is completed. 

Proposition 2.4 (i) allows us to define the Hankel type convolution f # � of f ∈ ��,� ���′ and � ∈  ��,� ��� as follows  �f#�� �	� 
  〈f, K% � 〉, 	 ∈  V0,WW∞� . 
Note that the last definition extends the Hankel type convolution from  ��,� ��� ×  ��,� ��� to ��,� ���<  ×  ��,� ���. Indeed, let �, � ∈  ��,� ���.   
We can write 

:f� # �; �	� 
  〈f�, K% �〉 
  � ���� �K%�� ���  ���2���Γ�3� + ��  ���

  


  �� # �� �	�, 	 ∈ V0,WW∞�. 
We now prove that f # � ∈  ��,� ���< for every f ∈  ��,� ���< and � ∈  ��,� ���. 
Proposition 3.2: Let f ∈  ��,� ��� and � ∈  ��,� ���. Then f# � is a continuous 

function on V0,WW∞�.  Moreover, there exist l � 0 and Ê ∈  ℕ such that 
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|�f#�� �	�| ≤ l AËF�%�, 	 ∈  V0,WW∞�. 
Hence, f#� defines an element of ��,� ���<. 
Proof: By Proposition 2.4 (ii), f#� is a continuous function on V0W, W∞�.  
Further, since f ∈  ��,� ���<, from Proposition 2.3 it implies that there exist l � 0 and Ê ∈  ℕ such that     |〈f, �〉|  ≤ l 'J	
º,ºË  6uË,,�,� ���,   rË,,�,����7 , � ∈  ��,� ���.    
In particular, we have  |�f#�� �	�|  ≤ l 'J	
º,ºË 6uË,,�,� �K% ��,  rË,,�,��K%��7,   	 ∈  V0,WW∞�. 
From (2.9), it is deduced that, uË,,�,� �K%��  ≤  AËF�%� uË,,�,� ���, 	 ∈  V0,WW∞� J(� ( ∈  ℕ . 
Also (2.10) implies, since � satisfies the property �Û�, that 

rË,,�,� �K%��  ≤ l �1 + 	�,� � rË,,�,����,
��
  

                      ≤ l A�F�%�  � rË,��,� ���, 	 ∈  V0,WW∞�  J(� ,
��
  Ê ∈  ℕ,  

for some � ∈  ℕ. 
Hence, for a certain ' ∈  ℕ, |�f#�� �	�|  ≤ l A+F�%� , 	 ∈  V0,WW∞�. 
Thus proof is completed. 

 Now, we introduce, for every ' ∈  ℕ, the space Ü+ ��� constituted by all those 

functions G defined on �0, ∞� such that  -./% ∈�
,�� A�+F�%�  |G�	�|  !  ∞. 
A careful reading of the proof of Proposition 3.2 allows us to deduce that if K ∈��,� ���< , there exists Ê ∈  ℕ such that f # �  ∈  ÜË ��� for every � ∈  ��,� ���.  
 Now we establish an associative property for the distributional convolution.  

Proposition 3.3: Let K ∈  ��,� ���<, and  �, � ∈  ��,� ���. Then                                                          �f#�� # � 
 f#��#��.                                             (3.5) 

Proof: Following Proposition 3.2,  f#� defines an element of ��,� ���< and we have 
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:�f#��# �; �	� 
  � �f#���

  ��� �K%�� ��� ���2���Γ�3� + ��  �� 

                               
  � 〈f, K��〉 �K%�� ��� ���2���Γ�3� + ��  �� ,   	 ∈  �0, ∞� �

 . 

Equality (3.5) will be proved when we see that, for every 	 ∈  �0, ∞�, 
�〈f, K� �〉 �

 �K%�� ��� ���2���Γ�3� + ��  �� 


  〈f���, � �K% �� ��� �K%�� ��� ���2��� Γ �3� + ��  ���

 〉 . 

We have                                                                                                                          (3.6) 

�:K� �; ��� :K� �; ��� ���2���Γ�3� + ��  ���

  


  ��K� �� �

 ��� �K% �� ��� ���2���Γ�3� + ��  �� 


  �K% � # �� �	� 
  K%��#�����, 	, �, ∈ V0, ∞�. 
Our objective is to prove (3.6). We will use a procedure similar to the one employed in 

the proof of Proposition 3.1. 

 Let 	 ∈  V0,WW∞�. By virtue of Proposition 3.2, it follows that limc→� T 〈f, K��〉 �c �K% �� ��� �Ý¢�¢Â£Þ���9��  �� 
 0 .                                                  (3.7) 

Assume that ', ( ∈  ℕ. According to (2.9), we can write 

u+,,�,�  Ð��K%�� ����K%�� ����



���2���Γ�3� + ��  ��Ñ 

≤ � A+F��� |�K%�� ���| ���2���Γ�3� + ��  �� u`�,��,�  ���,    Z � 0.�

   

 Thus from Proposition 2.4 (i), it is inferred that  

limc→� u+,,�,�  Ð� �K%�� ����
c �K%����� ���2���Γ�3� + ��  ��Ñ 
 0. 
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On the other hand, for every Z � 0, 
C1O  4D,  ��,�  Ð� �K�������K%�� ����

c  ���2���Γ�3� + �� ��Ñ �O� 


  ���1��  C(� D ��K%�� ����
c

,
��
  ���  ��O���9��� ����9���O� ��� ��  

×  C1O  4D,��  ��,� ��� �O�, O ∈  �0, ∞�. 
Thus, by Proposition 2.4(i) and taking into account the boundedness of the function ���9� ������� on �0, ∞�,  we have 

r+,,�,�  Ð��K��� ��� �K%����� �
c

���2���Γ�3� + ��  ��Ñ 

≤ l � r+,,���,�  ��� � |�K%�� ���|�
c

,
��
  ���9�� �� → 0, J± Z → ∞. 

Therefore, we see that                           T �K��� ��� �K%�� ��� �Ý¢�¢Â£Þ���9��  �� → 0,   J± Z → ∞,�c                    (3.8)   

in the sense of convergence in ��,� ���. 

Let Z � 0. By using, as in the proof of proposition 3.1, Riemann sums, we can prove that              T 〈f, K��〉 �K%�� c
 ��� ��� �� 
  〈f���, T :K��; ��� �K%�� ���c
  ���  ��〉.     (3.9) 

Thus by combining (3.7), (3.8) and (3.9), we deduce (3.6) and therefore proof of (3.5) is 

completed. 

As a special case, we have following corollary. 

Corollary 3.4: Let f ∈  ��,����′ and �, � ∈  ��,� ���. Then                                                           〈f#�, �〉 
  〈f, �#�〉.                                              (3.10) 

Proof: To see (3.10), it is sufficient to take 	 
 0 in (3.5). 

Remark 3: Note that the property in Corollary 3.4 is equivalent to the one in Proposition 

3.3. Indeed, let f ∈  ��,����′  and �, � ∈  ��,� ���. 
If 	 ∈ V0, ∞�, K% � ∈  ��,� ���  (Proposition 2.4 (i)). Then from Corollary 3.4 we 

deduce 
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�f#��# �� �	� 
  〈f, � # �K%��〉                               
  〈f, K% �� # ��〉                                                                    
  :f # �� # ��; �	�, 	 ∈ V0, W∞�. 
Thus Proposition 3.3 is established. 

 Now we obtain a distributional version of the interchange formula. 

Proposition 3.5: Let f ∈ ��,����′  and � ∈  ��,� ���. Then ��,�<  �f#�� 
  ��,�<  �f� ��,� ���. 
Proof : Assume that � ∈  ��,� ���.  According to Corollary 3.4, we can write 〈��,�<  �f#��, �〉 
  〈f#�,  ��,� ���〉 
  〈f,   �# ��,� ���〉 
  〈f, ��,� :��,� ��� �;〉 
  〈��,�<  �f� ��,� ���, �〉.  
Thus proof is completed. 

Another consequence of Corollary 3.4 is the following. 

Proposition 3.6: The space  

Ü ��� 
  d Ü+ ���+ ∈ ℕ  

is a weak * dense subspace of ��,����<.   
Proof: It is sufficient to take into account the remark after Proposition 3.2 and to use 

Proposition 2.7 and Corollary 3.4. 

 We now introduce the space ℱ�,� ��� that consists of all those f ∈  _�,� ���< for 

which there exists a function Ìà belonging to Ü+ ��� for some ' ∈  ℕ such that              〈f, �〉 
  T Ìà ��� ��,� ��� ��� �Ý¢�¢Â£Þ���9�� �
 ��, � ∈  _�,� ���.               (3.11) 

 Note that the right hand side of (3.11) defines a continuous functional on ��,� ���. Hence f can be extended to  ��,� ��� as an element of ��,� ���′. We denote 

by f that extension to ��,� ���. Moreover, for every � ∈  ���  ���,  it has  〈��,�<  f, �〉  
 〈f, ��,� ���〉 
                      
  � Ìà ��� �


 ��,�  3��,����5 ��� ���2���Γ�3� + ��  �� 



[Waphare, 2(10): October, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852  
 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 

[27826-2856] 


  � Ìà ��� ���� �

  ���2��� Γ�3� + ��  ��. 

Hence ��,�<  f coincides with the functional generated by Ìà on ��,� ���′. 
We can also prove that if f ∈  ℱ�,� ��� and � ∈  ��,� ��� , then f#� and f. � are in ℱ�,� ���. 
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